free electron laser
Recently Published Documents


TOTAL DOCUMENTS

5483
(FIVE YEARS 507)

H-INDEX

104
(FIVE YEARS 11)

Instruments ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Alexander Yu. Molodozhentsev ◽  
Konstantin O. Kruchinin

The combination of advanced high-power laser technology, new acceleration methods and achievements in undulator development offers the opportunity to build compact, high-brilliance free electron lasers driven by a laser wakefield accelerator. Here, we present a simulation study outlining the main requirements for the laser–plasma-based extreme ultraviolet free electron laser setup with the aim to reach saturation of the photon pulse energy in a single unit of a commercially available undulator with the deflection parameter K0 in the range of 1–1.5. A dedicated electron beam transport strategy that allows control of the electron beam slice parameters, including collective effects, required by the self-amplified spontaneous emission regime is proposed. Finally, a set of coherent photon radiation parameters achievable in the undulator section utilizing the best experimentally demonstrated electron beam parameters are analyzed. As a result, we demonstrate that the ultra-short, few-fs-level pulse of the photon radiation with the wavelength in the extreme ultraviolet range can be obtained with the peak brilliance of ∼7×1028 photons/pulse/mm2/mrad2/0.1%bw.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
A. E. Gleason ◽  
D. R. Rittman ◽  
C. A. Bolme ◽  
E. Galtier ◽  
H. J. Lee ◽  
...  

AbstractRecent discoveries of water-rich Neptune-like exoplanets require a more detailed understanding of the phase diagram of H2O at pressure–temperature conditions relevant to their planetary interiors. The unusual non-dipolar magnetic fields of ice giant planets, produced by convecting liquid ionic water, are influenced by exotic high-pressure states of H2O—yet the structure of ice in this state is challenging to determine experimentally. Here we present X-ray diffraction evidence of a body-centered cubic (BCC) structured H2O ice at 200 GPa and ~ 5000 K, deemed ice XIX, using the X-ray Free Electron Laser of the Linac Coherent Light Source to probe the structure of the oxygen sub-lattice during dynamic compression. Although several cubic or orthorhombic structures have been predicted to be the stable structure at these conditions, we show this BCC ice phase is stable to multi-Mbar pressures and temperatures near the melt boundary. This suggests variable and increased electrical conductivity to greater depths in ice giant planets that may promote the generation of multipolar magnetic fields.


2022 ◽  
Vol 1 (1) ◽  
pp. 91
Author(s):  
Varun Pathania ◽  
Sangyoon Bae ◽  
Kyu-Ha Jang ◽  
Kitae Lee ◽  
Young Uk Jeong

2022 ◽  
Vol 12 (2) ◽  
pp. 626
Author(s):  
Norihiro Sei ◽  
Heishun Zen ◽  
Hideaki Ohgaki

Spectra of coherent edge radiation (CER) were observed at the S-band linac facility of Kyoto University Free Electron Laser. A local maximum was observed in the CER spectrum on-crest operation of the radio frequency (RF) field. As the phase of the RF field was shifted from the crest, the frequency of the maximum decreased, and the CER spectrum approached a spectrum of Gaussian-distributed electrons in a bunch. It was found that this strange spectrum can be explained by a model in which a satellite pulse exists around a main pulse in the electron bunch. Furthermore, it demonstrated that CER is an effective tool for monitoring the shape of the electron bunch.


2022 ◽  
Vol 17 (01) ◽  
pp. P01003
Author(s):  
M. Li ◽  
W. Wei ◽  
X. Jiang ◽  
S. Cui ◽  
J. Zhang ◽  
...  

Abstract HYLITE (High dYmamic range free electron Laser Imaging deTEctor) is a hybrid pixel detector readout chip, which is designed for advanced light sources such as X-ray Free Electron Laser (XFEL) and diffraction-limited storage rings. It is a charge-integration readout chip which has three gains for different dynamic ranges and automatic gain-switching function. The full dynamic range covered by HYLITE is 1 ∼ 104 photons with an energy of 12 keV for each pixel in every shot. In-pixel ADC is designed to achieve front-end digitization and a 10 kHz continuous frame rate. HYLITE0.1 is the first prototype chip for functional verification that was produced in CMOS 0.13 μm technology. It consists of a pixel array with 6 × 12 pixels and a periphery with full standalone operation features. The size of each pixel is 200 μm × 200 μm. Three design variations of pixels with different integrating capacitance and structures were designed to optimize between area and performance. A 10-bit Wilkinson ADC is integrated in each pixel to digitize the outputs of the pre-amplifier. Therefore, analog signal transmission of long distance is avoided and a frame rate of 10 kHz can be achieved. In this paper, we present the design of HYLITE0.1 and the test results of this prototype chip.


2021 ◽  
Vol 12 (1) ◽  
pp. 176
Author(s):  
Bo Liu ◽  
Chao Feng ◽  
Duan Gu ◽  
Fei Gao ◽  
Haixiao Deng ◽  
...  

The Shanghai soft X-ray Free-Electron Laser facility (SXFEL), which is the first X-ray FEL facility in China, is being constructed in two phases: the test facility (SXFEL-TF) and the user facility (SXFEL-UF). The test facility was initiated in 2006 and funded in 2014. The commissioning of the test facility was finished in 2020. The user facility was funded in 2016 to upgrade the accelerator energy and build two undulator lines with five experimental end-stations. The output photon energy of the user facility will cover the whole water window range. This paper presents an overview of the SXFEL facility, including considerations of the upgrade, layout and design, construction status, commissioning progress and future plans.


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Mark A. Wilson

Directly observing enzyme catalysis in real time at the molecular level has been a long-standing goal of structural enzymology. Time-resolved serial crystallography methods at synchrotron and X-ray free electron laser (XFEL) sources have enabled researchers to follow enzyme catalysis and other nonequilibrium events at ambient conditions with unprecedented time resolution. X-ray crystallography provides detailed information about conformational heterogeneity and protein dynamics, which is enhanced when time-resolved approaches are used. This review outlines the ways in which information about the underlying energy landscape of a protein can be extracted from X-ray crystallographic data, with an emphasis on new developments in XFEL and synchrotron time-resolved crystallography. The emerging view of enzyme catalysis afforded by these techniques can be interpreted as enzymes moving on a time-dependent energy landscape. Some consequences of this view are discussed, including the proposal that irreversible enzymes or enzymes that use covalent catalytic mechanisms may commonly exhibit catalysis-activated motions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document