Geoscientific Instrumentation Methods and Data Systems
Latest Publications


TOTAL DOCUMENTS

309
(FIVE YEARS 86)

H-INDEX

17
(FIVE YEARS 4)

Published By Copernicus Gmbh

2193-0864

2021 ◽  
Vol 10 (2) ◽  
pp. 313-323
Author(s):  
M. Andy Kass ◽  
Esben Auken ◽  
Jakob Juul Larsen ◽  
Anders Vest Christiansen

Abstract. Efficient and accurate acquisition of magnetic field and gradient data have applications over a large range of environmental, archaeological, engineering, and geologic investigations. Developments in new systems and improvements in existing platforms have progressed to the point where magnetic surveying is a heavily used and trusted technique. However, there is still ample room to improve accuracy and coverage efficiency and to include reliable vector information. We have developed a vector magnetic gradiometer array capable of recording high-resolution field and gradient data over tens of hectares per day at 50 cm sensor spacing. Towed by an all-terrain vehicle, the system consists of eight vertical gradiometer sensor packages and incorporates differential GPS and an inertial measurement system. With a noise floor of around 6 nT at 15 km/h towing speed and 230 Hz sample rates, large areas can be mapped efficiently and precisely. Data are processed using a straightforward workflow, using both standard and newly developed methodologies. The system described here has been used successfully in Denmark to efficiently map buried structures and objects. We give two examples from such applications highlighting the system's capabilities in archaeological and geological applications.


2021 ◽  
Vol 10 (2) ◽  
pp. 297-312
Author(s):  
Johannes Aschauer ◽  
Christoph Marty

Abstract. Historic measurements are often temporally incomplete and may contain longer periods of missing data, whereas climatological analyses require continuous measurement records. This is also valid for historic manual snow depth (HS) measurement time series, for which even whole winters can be missing in a station record, and suitable methods have to be found to reconstruct the missing data. Daily in situ HS data from 126 nivo-meteorological stations in Switzerland in an altitudinal range of 230 to 2536 m above sea level are used to compare six different methods for reconstructing long gaps in manual HS time series by performing a “leave-one-winter-out” cross-validation in 21 winters at 33 evaluation stations. Synthetic gaps of one winter length are filled with bias-corrected data from the best-correlated neighboring station (BSC), inverse distance-weighted (IDW) spatial interpolation, a weighted normal ratio (WNR) method, elastic net (ENET) regression, random forest (RF) regression and a temperature index snow model (SM). Methods that use neighboring station data are tested in two station networks with different density. The ENET, RF, SM and WNR methods are able to reconstruct missing data with a coefficient of determination (r2) above 0.8 regardless of the two station networks used. The median root mean square error (RMSE) in the filled winters is below 5 cm for all methods. The two annual climate indicators, average snow depth in a winter (HSavg) and maximum snow depth in a winter (HSmax), can be reproduced by ENET, RF, SM and WNR well, with r2 above 0.85 in both station networks. For the inter-station approaches, scores for the number of snow days with HS>1 cm (dHS1) are clearly weaker and, except for BCS, positively biased with RMSE of 18–33 d. SM reveals the best performance with r2 of 0.93 and RMSE of 15 d for dHS1. Snow depth seems to be a relatively good-natured parameter when it comes to gap filling of HS data with neighboring stations in a climatological use case. However, when station networks get sparse and if the focus is set on dHS1, temperature index snow models can serve as a suitable alternative to classic inter-station gap filling approaches.


2021 ◽  
Vol 10 (2) ◽  
pp. 287-296
Author(s):  
Dejan Vasić ◽  
Marina Davidović ◽  
Ivan Radosavljević ◽  
Đorđe Obradović

Abstract. Panoramic images captured using laser scanning technologies, which principally produce point clouds, are readily applicable in colorization of point cloud, detailed visual inspection, road defect detection, spatial entities extraction, diverse map creation, etc. This paper underlines the importance of images in modern surveying technologies and different GIS projects at the same time having regard to their anonymization in accordance with law. The General Data Protection Regulation (GDPR) is a legal framework that sets guidelines for the collection and processing of personal information from individuals who live in the European Union (EU). Namely, it is a legislative requirement that faces of persons and license plates of vehicles in the collected data are blurred. The objective of this paper is to present a novel architecture of the solution for a particular object blurring. The architecture is designed as a pipeline of object detection algorithms that progressively narrows the search space until it detects the objects to be blurred. The methodology was tested on four data sets counting 5000, 10 000, 15 000 and 20 000 panoramic images. The percentage of accuracy, i.e., successfully detected and blurred objects of interest, was higher than 97 % for each data set. Additionally, our aim was to achieve efficiency and broad use.


2021 ◽  
Vol 10 (2) ◽  
pp. 265-285
Author(s):  
Wedad Alahamade ◽  
Iain Lake ◽  
Claire E. Reeves ◽  
Beatriz De La Iglesia

Abstract. Air pollution is one of the world's leading risk factors for death, with 6.5 million deaths per year worldwide attributed to air-pollution-related diseases. Understanding the behaviour of certain pollutants through air quality assessment can produce improvements in air quality management that will translate to health and economic benefits. However, problems with missing data and uncertainty hinder that assessment. We are motivated by the need to enhance the air pollution data available. We focus on the problem of missing air pollutant concentration data either because a limited set of pollutants is measured at a monitoring site or because an instrument is not operating, so a particular pollutant is not measured for a period of time. In our previous work, we have proposed models which can impute a whole missing time series to enhance air quality monitoring. Some of these models are based on a multivariate time series (MVTS) clustering method. Here, we apply our method to real data and show how different graphical and statistical model evaluation functions enable us to select the imputation model that produces the most plausible imputations. We then compare the Daily Air Quality Index (DAQI) values obtained after imputation with observed values incorporating missing data. Our results show that using an ensemble model that aggregates the spatial similarity obtained by the geographical correlation between monitoring stations and the fused temporal similarity between pollutant concentrations produces very good imputation results. Furthermore, the analysis enhances understanding of the different pollutant behaviours and of the characteristics of different stations according to their environmental type.


2021 ◽  
Vol 10 (2) ◽  
pp. 257-264
Author(s):  
Zhijian Zhou ◽  
Zhilong Liu ◽  
Wenduo Li ◽  
Yihang Wang ◽  
Chao Wang

Abstract. Aeromagnetic exploration is an important method of geophysical exploration. We study the compensation method of the towed bird system and establish the towed bird interference model. Due to the geomagnetic gradient changing greatly, the geomagnetic gradient is considered in the towed bird interference model. In this paper, we model the geomagnetic field gradient and analyze the influence of the towed bird system on the aeromagnetic compensation results. Finally, we apply the ridge regression method to solve the problem. We verify the feasibility of this compensation method through actual flight tests and further improve the data quality of the towed bird interference.


2021 ◽  
Vol 10 (2) ◽  
pp. 245-255
Author(s):  
Jialuo Zhang ◽  
Jun Chen ◽  
Meng Wang ◽  
Mingxu Su ◽  
Wu Zhou ◽  
...  

Abstract. The study of aerosol optical properties is essential to understand its impact on the global climate. In our recent field measurement carried out in the Gehu area of southwest Changzhou City, a photoacoustic extinctiometer (PAX) and a cavity attenuated phase shift albedo monitor (CAPS-ALB) were used for online aerosol optical properties measurement. Laboratory calibration with gas and particle samples were carried out to correct disagreements of field measurements. During particle calibration, we adopted ammonium sulfate (AS) samples for scattering calibration of nephelometer parts of both the instruments, then combined these with number-size distribution measurements in the MIE model for calculating the value of the total scattering (extinction) coefficient. During gas calibration, we employed high concentrations of NO2 for absorption calibration of the PAX resonator and then further intercompared the extinction coefficient of CAPS-ALB with a cavity-enhanced spectrometer. The correction coefficient obtained from the laboratory calibration experiments was employed on the optical properties observed in the field measurements correspondingly and showed good results in comparison with reconstructed extinction from the IMPROVE model. The intercomparison of the calibrated optical properties of PAX and CAPS-ALB in field measurements was in good agreement with slopes of 1.052, 1.024 and 1.046 for extinction, scattering and absorption respectively, which shows the reliability of measurement results and verifies the correlation between the photoacoustic and the cavity attenuated phase shift instruments.


2021 ◽  
Vol 10 (2) ◽  
pp. 227-243
Author(s):  
Ye Zhu ◽  
Aimin Du ◽  
Hao Luo ◽  
Donghai Qiao ◽  
Ying Zhang ◽  
...  

Abstract. The Low Orbit Pearl Satellite series consists of six constellations, with each constellation consisting of three identical microsatellites that line up just like a string of pearls. The first constellation of three satellites were launched on 29 September 2017, with an inclination of ∼ 35.5∘ and ∼ 600 km altitude. Each satellite is equipped with three identical fluxgate magnetometers that measure the in situ magnetic field and its low-frequency fluctuations in the Earth's low-altitude orbit. The triple sensor configuration enables separation of stray field effects generated by the spacecraft from the ambient magnetic field (e.g., Zhang et al., 2006). This paper gives a general description of the magnetometer including the instrument design, calibration before launch, in-flight calibration, in-flight performance, and initial results. Unprecedented spatial coverage resolution of the magnetic field measurements allow for the investigation of the dynamic processes and electric currents of the ionosphere and magnetosphere, especially for the ring current and equatorial electrojet during both quiet geomagnetic conditions and storms. Magnetic field measurements from LOPS could be important for studying the method to separate their contributions of the Magnetosphere-Ionosphere (M-I) current system.


2021 ◽  
Vol 10 (2) ◽  
pp. 219-226
Author(s):  
Maxim Philippov ◽  
Vladimir Makhmutov ◽  
Galina Bazilevskaya ◽  
Fedor Zagumennov ◽  
Vladimir Fomenko ◽  
...  

Abstract. In this paper, we discuss the influence of meteorological effects on the data of the ground installation CARPET, which is a detector of the charged component of secondary cosmic rays (CRs). This device is designed in the P.N. Lebedev Physical Institute (LPI, Moscow, Russia) and installed at the Dolgoprudny scientific station (Dolgoprudny, Moscow region; 55.56∘ N, 37.3∘ E; geomagnetic cutoff rigidity (Rc = 2.12 GV) in 2017. Based on the data obtained in 2019–2020, the barometric and temperature correction coefficients for the CARPET installation were determined. The barometric coefficient was calculated from the data of the barometric pressure sensor included in the installation. To determine the temperature effect, we used the data of upper-air sounding of the atmosphere obtained by the Federal State Budgetary Institution “Central Aerological Observatory” (CAO), also located in Dolgoprudny. Upper-air sounds launch twice a day and can reach an altitude of more than 30 km.


2021 ◽  
Vol 10 (2) ◽  
pp. 203-218
Author(s):  
Ondřej Racek ◽  
Jan Blahůt ◽  
Filip Hartvich

Abstract. This paper describes a newly designed, experimental, and affordable rock slope monitoring system. This system is being used to monitor three rock slopes in Czechia for a period of up to 2 years. The instrumented rock slopes have different lithology (sandstone, limestone, and granite), aspect, and structural and mechanical properties. Induction crackmeters monitor the dynamic of joints, which separate unstable rock blocks from the rock face. This setup works with a repeatability of measurements of 0.05 mm. External destabilising factors (air temperature, precipitation, incoming and outgoing radiation, etc.) are measured by a weather station placed directly within the rock slope. Thermal behaviour in the rock slope surface zone is monitored using a compound temperature probe, placed inside a 3 m deep subhorizontal borehole, which is insulated from external air temperature. Additionally, one thermocouple is placed directly on the rock slope surface. From the time series measured to date (the longest since autumn 2018), we are able to distinguish differences between the annual and diurnal temperature cycles of the monitored sites. From the first data, a greater annual joint dynamic is measured in the case of larger blocks; however, smaller blocks are more responsive to short-term diurnal temperature cycles. Differences in the thermal regime between the sites are also recognisable and are caused mainly by different slope aspect, rock mass thermal conductivity, and colour. These differences will be explained by the statistical analysis of longer time series in the future.


2021 ◽  
Vol 10 (2) ◽  
pp. 183-202
Author(s):  
Monika Bociarska ◽  
Julia Rewers ◽  
Dariusz Wójcik ◽  
Weronika Materkowska ◽  
Piotr Środa ◽  
...  

Abstract. The paper presents information about the seismic experiment “AniMaLS” which aims to provide a new insight into the crust and upper mantle structure beneath the Polish Sudetes (NE margin of the Variscan orogen). The seismic network composed of 23 temporary broadband stations was operated continuously for about 2 years (October 2017 to October 2019). The dataset was complemented by records from eight permanent stations located in the study area and in the vicinity. The stations were deployed with an inter-station spacing of approximately 25–30 km. As a result, recordings of local, regional and teleseismic events were obtained. We describe the aims and motivation of the project, the station deployment procedure, as well as the characteristics of the temporary seismic network and of the permanent stations. Furthermore, this paper includes a description of important issues like data transmission setup, status monitoring systems, data quality control, near-surface geological structure beneath stations and related site effects, etc. Special attention was paid to verification of correct orientation of the sensors. The obtained dataset will be analysed using several seismic interpretation methods, including analysis of seismic anisotropy parameters, with the objective of extending knowledge about the lithospheric and sublithospheric structure and the tectonic evolution of the study area.


Sign in / Sign up

Export Citation Format

Share Document