scholarly journals Effects of Consonant-Vowel Transitions in Speech Stimuli on Cortical Auditory Evoked Potentials in Adults

2011 ◽  
Vol 5 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Michael Doellinger
2014 ◽  
Vol 155 (38) ◽  
pp. 1524-1529
Author(s):  
Ádám Bach ◽  
Ferenc Tóth ◽  
Vera Matievics ◽  
József Géza Kiss ◽  
József Jóri ◽  
...  

Introduction: Cortical auditory evoked potentials can provide objective information about the highest level of the auditory system. Aim: The purpose of the authors was to introduce a new tool, the “HEARLab” which can be routinely used in clinical practice for the measurement of the cortical auditory evoked potentials. In addition, they wanted to establish standards of the analyzed parameters in subjects with normal hearing. Method: 25 adults with normal hearing were tested with speech stimuli, and frequency specific examinations were performed utilizing pure tone stimuli. Results: The findings regarding the latency and amplitude analyses of the evoked potentials confirm previously published results of this novel method. Conclusions: The HEARLAb can be a great help when performance of the conventional audiological examinations is complicated. The examination can be performed in uncooperative subjects even in the presence of hearing aids. The test is frequency specific and does not require anesthesia. Orv. Hetil., 2014, 155(38), 1524–1529.


2006 ◽  
Vol 17 (08) ◽  
pp. 559-572 ◽  
Author(s):  
Katrina Agung ◽  
Suzanne C. Purdy ◽  
Catherine M. McMahon ◽  
Philip Newall

There has been considerable recent interest in the use of cortical auditory evoked potentials (CAEPs) as an electrophysiological measure of human speech encoding in individuals with normal as well as impaired auditory systems. The development of such electrophysiological measures such as CAEPs is important because they can be used to evaluate the benefits of hearing aids and cochlear implants in infants, young children, and adults that cannot cooperate for behavioral speech discrimination testing. The current study determined whether CAEPs produced by seven different speech sounds, which together cover a broad range of frequencies across the speech spectrum, could be differentiated from each other based on response latency and amplitude measures. CAEPs were recorded from ten adults with normal hearing in response to speech stimuli presented at a conversational level (65 dB SPL) via a loudspeaker. Cortical responses were reliably elicited by each of the speech sounds in all participants. CAEPs produced by speech sounds dominated by high-frequency energy were significantly different in amplitude from CAEPs produced by sounds dominated by lower-frequency energy. Significant effects of stimulus duration were also observed, with shorter duration stimuli producing larger amplitudes and earlier latencies than longer duration stimuli. This research demonstrates that CAEPs can be reliably evoked by sounds that encompass the entire speech frequency range. Further, CAEP latencies and amplitudes may provide an objective indication that spectrally different speech sounds are encoded differently at the cortical level.


2013 ◽  
Vol 79 (3) ◽  
pp. 336-341 ◽  
Author(s):  
Kátia de Freitas Alvarenga ◽  
Leticia Cristina Vicente ◽  
Raquel Caroline Ferreira Lopes ◽  
Rubem Abrão da Silva ◽  
Marcos Roberto Banhara ◽  
...  

2013 ◽  
Vol 24 (09) ◽  
pp. 807-822 ◽  
Author(s):  
Lyndal Carter ◽  
Harvey Dillon ◽  
John Seymour ◽  
Mark Seeto ◽  
Bram Van Dun

Background: Previous studies have demonstrated that cortical auditory-evoked potentials (CAEPs) can be reliably elicited in response to speech stimuli in listeners wearing hearing aids. It is unclear, however, how close to the aided behavioral threshold (i.e., at what behavioral sensation level) a sound must be before a cortical response can reliably be detected. Purpose: The purpose of this study was to systematically examine the relationship between CAEP detection and the audibility of speech sounds (as measured behaviorally), when the listener is wearing a hearing aid fitted to prescriptive targets. A secondary aim was to investigate whether CAEP detection is affected by varying the frequency emphasis of stimuli, so as to simulate variations to the prescribed gain-frequency response of a hearing aid. The results have direct implications for the evaluation of hearing aid fittings in nonresponsive adult clients, and indirect implications for the evaluation of hearing aid fittings in infants. Research Design: Participants wore hearing aids while listening to speech sounds presented in a sound field. Aided thresholds were measured, and cortical responses evoked, under a range of stimulus conditions. The presence or absence of CAEPs was determined by an automated statistic. Study Sample: Participants were adults (6 females and 4 males). Participants had sensorineural hearing loss ranging from mild to severe-profound in degree. Data Collection and Analysis: Participants' own hearing aids were replaced with a test hearing aid, with linear processing, during assessments. Pure-tone thresholds and hearing aid gain measurements were obtained, and a theoretical prediction of speech stimulus audibility for each participant (similar to those used for audibility predictions in infant hearing aid fittings) was calculated. Three speech stimuli, (/m/, /t/, and /g/) were presented aided (monaurally, nontest ear occluded), free field, under three conditions (+4 dB/octave, −4 dB/octave, and without filtering), at levels of 40, 50, and 60 dB SPL (measured for the unfiltered condition). Behavioral thresholds were obtained, and CAEP recordings were made using these stimuli. The interaction of hearing loss, presentation levels, and filtering conditions resulted in a range of CAEP test behavioral sensation levels (SLs), from −25 to +40 dB. Results: Statistically significant CAEPs (p < .05) were obtained for virtually every presentation where the behavioral sensation level was >10 dB, and for only 5% of occasions when the sensation level was negative. In these (“false-positive”) cases, the greatest (negative) sensation level at which a CAEP was judged to be present was −6 dB SL. Conclusions: CAEPs are a sensitive tool for directly evaluating the audibility of speech sounds, at least for adult listeners. CAEP evaluation was found to be more accurate than audibility predictions, based on threshold and hearing aid response measures.


2007 ◽  
Vol 59 (5) ◽  
pp. 273-280 ◽  
Author(s):  
Peter Kummer ◽  
Martin Burger ◽  
Maria Schuster ◽  
Frank Rosanowski ◽  
Ulrich Eysholdt ◽  
...  

2021 ◽  
Vol 64 (10) ◽  
pp. 4014-4029
Author(s):  
Kathy R. Vander Werff ◽  
Christopher E. Niemczak ◽  
Kenneth Morse

Purpose Background noise has been categorized as energetic masking due to spectrotemporal overlap of the target and masker on the auditory periphery or informational masking due to cognitive-level interference from relevant content such as speech. The effects of masking on cortical and sensory auditory processing can be objectively studied with the cortical auditory evoked potential (CAEP). However, whether effects on neural response morphology are due to energetic spectrotemporal differences or informational content is not fully understood. The current multi-experiment series was designed to assess the effects of speech versus nonspeech maskers on the neural encoding of speech information in the central auditory system, specifically in terms of the effects of speech babble noise maskers varying by talker number. Method CAEPs were recorded from normal-hearing young adults in response to speech syllables in the presence of energetic maskers (white or speech-shaped noise) and varying amounts of informational maskers (speech babble maskers). The primary manipulation of informational masking was the number of talkers in speech babble, and results on CAEPs were compared to those of nonspeech maskers with different temporal and spectral characteristics. Results Even when nonspeech noise maskers were spectrally shaped and temporally modulated to speech babble maskers, notable changes in the typical morphology of the CAEP in response to speech stimuli were identified in the presence of primarily energetic maskers and speech babble maskers with varying numbers of talkers. Conclusions While differences in CAEP outcomes did not reach significance by number of talkers, neural components were significantly affected by speech babble maskers compared to nonspeech maskers. These results suggest an informational masking influence on neural encoding of speech information at the sensory cortical level of auditory processing, even without active participation on the part of the listener.


Sign in / Sign up

Export Citation Format

Share Document