cortical auditory evoked potentials
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 31)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Danielle Samara Bandeira Duarte ◽  
Silvana Maria Sobral Griz ◽  
Mônyka Ferreira Borges Rocha ◽  
Diana Babini Lapa de Albuquerque Britto ◽  
Denise Costa Menezes ◽  
...  

2021 ◽  
Vol 64 (10) ◽  
pp. 4014-4029
Author(s):  
Kathy R. Vander Werff ◽  
Christopher E. Niemczak ◽  
Kenneth Morse

Purpose Background noise has been categorized as energetic masking due to spectrotemporal overlap of the target and masker on the auditory periphery or informational masking due to cognitive-level interference from relevant content such as speech. The effects of masking on cortical and sensory auditory processing can be objectively studied with the cortical auditory evoked potential (CAEP). However, whether effects on neural response morphology are due to energetic spectrotemporal differences or informational content is not fully understood. The current multi-experiment series was designed to assess the effects of speech versus nonspeech maskers on the neural encoding of speech information in the central auditory system, specifically in terms of the effects of speech babble noise maskers varying by talker number. Method CAEPs were recorded from normal-hearing young adults in response to speech syllables in the presence of energetic maskers (white or speech-shaped noise) and varying amounts of informational maskers (speech babble maskers). The primary manipulation of informational masking was the number of talkers in speech babble, and results on CAEPs were compared to those of nonspeech maskers with different temporal and spectral characteristics. Results Even when nonspeech noise maskers were spectrally shaped and temporally modulated to speech babble maskers, notable changes in the typical morphology of the CAEP in response to speech stimuli were identified in the presence of primarily energetic maskers and speech babble maskers with varying numbers of talkers. Conclusions While differences in CAEP outcomes did not reach significance by number of talkers, neural components were significantly affected by speech babble maskers compared to nonspeech maskers. These results suggest an informational masking influence on neural encoding of speech information at the sensory cortical level of auditory processing, even without active participation on the part of the listener.


Author(s):  
Pamela Papile Lunardelo ◽  
Marisa Tomoe Hebihara Fukuda ◽  
Patricia Aparecida Zuanetti ◽  
Ângela Cristina Pontes-Fernandes ◽  
Marita Iannazzo Ferretti ◽  
...  

2021 ◽  
Author(s):  
Nina Aldag ◽  
Andreas Büchner ◽  
Thomas Lenarz ◽  
Waldo Nogueira

Objectives: Focusing attention on one speaker in a situation with multiple background speakers or noise is referred to as auditory selective attention. Decoding selective attention is an interesting line of research with respect to future brain-guided hearing aids or cochlear implants (CIs) that are designed to adaptively adjust sound processing through cortical feedback loops. This study investigates the feasibility of using the electrodes and backward telemetry of a CI to record electroencephalography (EEG). Approach: The study population included 6 normal-hearing (NH) listeners and 5 CI users with contralateral acoustic hearing. Cortical auditory evoked potentials (CAEP) and selective attention were recorded using a state-of-the-art high-density scalp EEG and, in the case of CI users, also using two CI electrodes as sensors in combination with the backward telemetry system of these devices (iEEG). Main results: The peak amplitudes of the CAEPs recorded with iEEG were lower and the latencies were higher than those recorded with scalp EEG. In the selective attention paradigm with multi-channel scalp EEG the mean decoding accuracy across subjects was 92.0 and 92.5% for NH listeners and CI users, respectively. With single-channel scalp EEG the accuracy decreased to 65.6 and to 75.8% for NH listeners and CI users, respectively, and was above chance level in 9 out of 11 subjects. With the single-channel iEEG, the accuracy for CI users decreased to 70% and was above chance level in 3 out of 5 subjects. Significance: This study shows that single-channel EEG is suitable for auditory selective attention decoding, even though it reduces the decoding quality compared to a multi-channel approach. CI-based iEEG can be used for the purpose of recording CAEPs and decoding selective attention. However, the study also points out the need for further technical development for the CI backward telemetry regarding long-term recordings and the optimal sensor positions.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Michael Alexander Chesnaye ◽  
Steven Lewis Bell ◽  
James Michael Harte ◽  
Lisbeth Birkelund Simonsen ◽  
Anisa Sadru Visram ◽  
...  

2020 ◽  
Vol 13 (3) ◽  
pp. 241-248 ◽  
Author(s):  
Ji-Hye Han ◽  
Jihyun Lee ◽  
Hyo-Jeong Lee

Objectives. Cochlear implant (CI) users typically report impaired ability to understand speech in noise. Speech understanding in CI users decreases with noise due to reduced temporal processing ability, and speech perceptual errors involve stop consonants distinguished by voice onset time (VOT). The current study examined the effects of noise on various speech perception tests while at the same time used cortical auditory evoked potentials (CAEPs) to quantify the change of neural processing of speech sounds caused by noise. We hypothesized that the noise effects on VOT processing can be reflected in N1/P2 measures, the neural changes relate to behavioral speech perception performances.Methods. Ten adult CI users and 15 normal-hearing (NH) people participated in this study. CAEPs were recorded from 64 scalp electrodes in both quiet and noise (signal-to-noise ratio +5 dB) and in passive and active (requiring consonant discrimination) listening. Speech stimulus was synthesized consonant-vowels with VOTs of 0 and 50 ms. N1-P2 amplitudes and latencies were analyzed as a function of listening condition. For the active condition, the P3b also was analyzed. Behavioral measures included a variety of speech perception tasks.Results. For good performing CI users, performance in most speech test was lower in the presence of noise masking. N1 and P2 latencies became prolonged with noise masking. The P3b amplitudes were smaller in CI groups compared to NH. The degree of P2 latency change (0 vs. 50 ms VOT) was correlated with consonant perception in noise.Conclusion. The effects of noise masking on temporal processing can be reflected in cortical responses in CI users. N1/P2 latencies were more sensitive to noise masking than amplitude measures. Additionally, P2 responses appear to have a better relationship to speech perception in CI users compared to N1.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Hannalice Gottschalck Cavalcanti ◽  
Aryelly Dayane da Silva Nunes ◽  
Brenda Karla Silva da Cunha ◽  
Kátia de Freitas Alvarenga ◽  
Sheila Andreoli Balen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document