scholarly journals Evaluation of the Quadri-Planes Method in Computer-Aided Diagnosis of Breast Lesions by Ultrasonography: Prospective Single-Center Study

10.2196/18251 ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. e18251 ◽  
Author(s):  
Liang Yongping ◽  
Zhang Juan ◽  
Ping Zhou ◽  
Zhao Yongfeng ◽  
Wengang Liu ◽  
...  

Background Computer-aided diagnosis (CAD) is a tool that can help radiologists diagnose breast lesions by ultrasonography. Previous studies have demonstrated that CAD can help reduce the incidence of missed diagnoses by radiologists. However, the optimal method to apply CAD to breast lesions using diagnostic planes has not been assessed. Objective The aim of this study was to compare the performance of radiologists with different levels of experience when using CAD with the quadri-planes method to detect breast tumors. Methods From November 2018 to October 2019, we enrolled patients in the study who had a breast mass as their most prominent symptom. We assigned 2 ultrasound radiologists (with 1 and 5 years of experience, respectively) to read breast ultrasonography images without CAD and then to perform a second reading while applying CAD with the quadri-planes method. We then compared the diagnostic performance of the readers for the 2 readings (without and with CAD). The McNemar test for paired data was used for statistical analysis. Results A total of 331 patients were included in this study (mean age 43.88 years, range 17-70, SD 12.10), including 512 lesions (mean diameter 1.85 centimeters, SD 1.19; range 0.26-9.5); 200/512 (39.1%) were malignant, and 312/512 (60.9%) were benign. For CAD, the area under the receiver operating characteristic curve (AUC) improved significantly from 0.76 (95% CI 0.71-0.79) with the cross-planes method to 0.84 (95% CI 0.80-0.88; P<.001) with the quadri-planes method. For the novice reader, the AUC significantly improved from 0.73 (95% CI 0.69-0.78) for the without-CAD mode to 0.83 (95% CI 0.80-0.87; P<.001) for the combined-CAD mode with the quadri-planes method. For the experienced reader, the AUC improved from 0.85 (95% CI 0.81-0.88) to 0.87 (95% CI 0.84-0.91; P=.15). The kappa indicating consistency between the experienced reader and the novice reader for the combined-CAD mode was 0.63. For the novice reader, the sensitivity significantly improved from 60.0% for the without-CAD mode to 79.0% for the combined-CAD mode (P=.004). The specificity, negative predictive value, positive predictive value, and accuracy improved from 84.9% to 87.8% (P=.53), 76.8% to 86.7% (P=.07), 71.9% to 80.6% (P=.13), and 75.2% to 84.4% (P=.12), respectively. For the experienced reader, the sensitivity improved significantly from 76.0% for the without-CAD mode to 87.0% for the combined-CAD mode (P=.045). The NPV and accuracy moderately improved from 85.8% and 86.3% to 91.0% (P=.27) and 87.0% (P=.84), respectively. The specificity and positive predictive value decreased from 87.4% to 81.3% (P=.25) and from 87.2% to 93.0% (P=.16), respectively. Conclusions S-Detect is a feasible diagnostic tool that can improve the sensitivity, accuracy, and AUC of the quadri-planes method for both novice and experienced readers while also improving the specificity for the novice reader. It demonstrates important application value in the clinical diagnosis of breast cancer. Trial Registration ChiCTR.org.cn 1800019649; http://www.chictr.org.cn/showproj.aspx?proj=33094

2020 ◽  
Author(s):  
Liang Yongping ◽  
Zhang Juan ◽  
Ping Zhou ◽  
Zhao Yongfeng ◽  
Wengang Liu ◽  
...  

BACKGROUND Computer-aided diagnosis (CAD) is a tool that can help radiologists diagnose breast lesions by ultrasonography. Previous studies have demonstrated that CAD can help reduce the incidence of missed diagnoses by radiologists. However, the optimal method to apply CAD to breast lesions using diagnostic planes has not been assessed. OBJECTIVE The aim of this study was to compare the performance of radiologists with different levels of experience when using CAD with the quadri-planes method to detect breast tumors. METHODS From November 2018 to October 2019, we enrolled patients in the study who had a breast mass as their most prominent symptom. We assigned 2 ultrasound radiologists (with 1 and 5 years of experience, respectively) to read breast ultrasonography images without CAD and then to perform a second reading while applying CAD with the quadri-planes method. We then compared the diagnostic performance of the readers for the 2 readings (without and with CAD). The McNemar test for paired data was used for statistical analysis. RESULTS A total of 331 patients were included in this study (mean age 43.88 years, range 17-70, SD 12.10), including 512 lesions (mean diameter 1.85 centimeters, SD 1.19; range 0.26-9.5); 200/512 (39.1%) were malignant, and 312/512 (60.9%) were benign. For CAD, the area under the receiver operating characteristic curve (AUC) improved significantly from 0.76 (95% CI 0.71-0.79) with the cross-planes method to 0.84 (95% CI 0.80-0.88; <i>P</i>&lt;.001) with the quadri-planes method. For the novice reader, the AUC significantly improved from 0.73 (95% CI 0.69-0.78) for the without-CAD mode to 0.83 (95% CI 0.80-0.87; <i>P</i>&lt;.001) for the combined-CAD mode with the quadri-planes method. For the experienced reader, the AUC improved from 0.85 (95% CI 0.81-0.88) to 0.87 (95% CI 0.84-0.91; <i>P</i>=.15). The kappa indicating consistency between the experienced reader and the novice reader for the combined-CAD mode was 0.63. For the novice reader, the sensitivity significantly improved from 60.0% for the without-CAD mode to 79.0% for the combined-CAD mode (<i>P</i>=.004). The specificity, negative predictive value, positive predictive value, and accuracy improved from 84.9% to 87.8% (<i>P</i>=.53), 76.8% to 86.7% (<i>P</i>=.07), 71.9% to 80.6% (<i>P</i>=.13), and 75.2% to 84.4% (<i>P</i>=.12), respectively. For the experienced reader, the sensitivity improved significantly from 76.0% for the without-CAD mode to 87.0% for the combined-CAD mode (<i>P</i>=.045). The NPV and accuracy moderately improved from 85.8% and 86.3% to 91.0% (<i>P</i>=.27) and 87.0% (<i>P</i>=.84), respectively. The specificity and positive predictive value decreased from 87.4% to 81.3% (<i>P</i>=.25) and from 87.2% to 93.0% (<i>P</i>=.16), respectively. CONCLUSIONS S-Detect is a feasible diagnostic tool that can improve the sensitivity, accuracy, and AUC of the quadri-planes method for both novice and experienced readers while also improving the specificity for the novice reader. It demonstrates important application value in the clinical diagnosis of breast cancer. CLINICALTRIAL ChiCTR.org.cn 1800019649; http://www.chictr.org.cn/showproj.aspx?proj=33094


10.2196/16334 ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. e16334 ◽  
Author(s):  
Liang Yongping ◽  
Ping Zhou ◽  
Zhang Juan ◽  
Zhao Yongfeng ◽  
Wengang Liu ◽  
...  

Background Computer-aided diagnosis (CAD) is used as an aid tool by radiologists on breast lesion diagnosis in ultrasonography. Previous studies demonstrated that CAD can improve the diagnosis performance of radiologists. However, the optimal use of CAD on breast lesions according to size (below or above 2 cm) has not been assessed. Objective The aim of this study was to compare the performance of different radiologists using CAD to detect breast tumors less and more than 2 cm in size. Methods We prospectively enrolled 261 consecutive patients (mean age 43 years; age range 17-70 years), including 398 lesions (148 lesions>2 cm, 79 malignant and 69 benign; 250 lesions≤2 cm, 71 malignant and 179 benign) with breast mass as the prominent symptom. One novice radiologist with 1 year of ultrasonography experience and one experienced radiologist with 5 years of ultrasonography experience were each assigned to read the ultrasonography images without CAD, and then again at a second reading while applying the CAD S-Detect. We then compared the diagnostic performance of the readers in the two readings (without and combined with CAD) with breast imaging. The McNemar test for paired data was used for statistical analysis. Results For the novice reader, the area under the receiver operating characteristic curve (AUC) improved from 0.74 (95% CI 0.67-0.82) from the without-CAD mode to 0.88 (95% CI 0.83-0.93; P<.001) at the combined-CAD mode in lesions≤2 cm. For the experienced reader, the AUC improved from 0.84 (95% CI 0.77-0.90) to 0.90 (95% CI 0.86-0.94; P=.002). In lesions>2 cm, the AUC moderately decreased from 0.81 to 0.80 (novice reader) and from 0.90 to 0.82 (experienced reader). The sensitivity of the novice and experienced reader in lesions≤2 cm improved from 61.97% and 73.23% at the without-CAD mode to 90.14% and 97.18% (both P<.001) at the combined-CAD mode, respectively. Conclusions S-Detect is a feasible diagnostic tool that can improve the sensitivity for both novice and experienced readers, while also improving the negative predictive value and AUC for lesions≤2 cm, demonstrating important application value in the clinical diagnosis of breast cancer. Trial Registration Chinese Clinical Trial Registry ChiCTR1800019649; http://www.chictr.org.cn/showprojen.aspx?proj=33094


2019 ◽  
Author(s):  
Liang Yongping ◽  
Ping Zhou ◽  
Zhang Juan ◽  
Zhao Yongfeng ◽  
Wengang Liu ◽  
...  

BACKGROUND Computer-aided diagnosis (CAD) is used as an aid tool by radiologists on breast lesion diagnosis in ultrasonography. Previous studies demonstrated that CAD can improve the diagnosis performance of radiologists. However, the optimal use of CAD on breast lesions according to size (below or above 2 cm) has not been assessed. OBJECTIVE The aim of this study was to compare the performance of different radiologists using CAD to detect breast tumors less and more than 2 cm in size. METHODS We prospectively enrolled 261 consecutive patients (mean age 43 years; age range 17-70 years), including 398 lesions (148 lesions&gt;2 cm, 79 malignant and 69 benign; 250 lesions≤2 cm, 71 malignant and 179 benign) with breast mass as the prominent symptom. One novice radiologist with 1 year of ultrasonography experience and one experienced radiologist with 5 years of ultrasonography experience were each assigned to read the ultrasonography images without CAD, and then again at a second reading while applying the CAD S-Detect. We then compared the diagnostic performance of the readers in the two readings (without and combined with CAD) with breast imaging. The McNemar test for paired data was used for statistical analysis. RESULTS For the novice reader, the area under the receiver operating characteristic curve (AUC) improved from 0.74 (95% CI 0.67-0.82) from the without-CAD mode to 0.88 (95% CI 0.83-0.93; <i>P</i>&lt;.001) at the combined-CAD mode in lesions≤2 cm. For the experienced reader, the AUC improved from 0.84 (95% CI 0.77-0.90) to 0.90 (95% CI 0.86-0.94; <i>P</i>=.002). In lesions&gt;2 cm, the AUC moderately decreased from 0.81 to 0.80 (novice reader) and from 0.90 to 0.82 (experienced reader). The sensitivity of the novice and experienced reader in lesions≤2 cm improved from 61.97% and 73.23% at the without-CAD mode to 90.14% and 97.18% (both <i>P</i>&lt;.001) at the combined-CAD mode, respectively. CONCLUSIONS S-Detect is a feasible diagnostic tool that can improve the sensitivity for both novice and experienced readers, while also improving the negative predictive value and AUC for lesions≤2 cm, demonstrating important application value in the clinical diagnosis of breast cancer. CLINICALTRIAL Chinese Clinical Trial Registry ChiCTR1800019649; http://www.chictr.org.cn/showprojen.aspx?proj=33094


2020 ◽  
Author(s):  
Pengfei Sun ◽  
Chen Chen ◽  
Weiqi Wang ◽  
Lei Liang ◽  
Dan Luo ◽  
...  

BACKGROUND Computer-aided diagnosis (CAD) is a useful tool that can provide a reference for the differential diagnosis of benign and malignant breast lesion. Previous studies have demonstrated that CAD can improve the diagnostic performance. However, conventional ultrasound (US) combined with CAD were used to adjust the classification of category 4 lesions has been few assessed. OBJECTIVE The objective of our study was to evaluate the diagnosis performance of conventional ultrasound combined with a CAD system S-Detect in the category of BI-RADS 4 breast lesions. METHODS Between December 2018 and May 2020, we enrolled patients in this study who received conventional ultrasound and S-Detect before US-guided biopsy or surgical excision. The diagnostic performance was compared between US findings only and the combined use of US findings with S-Detect, which were correlated with pathology results. RESULTS A total of 98 patients (mean age 51.06 ±16.25 years, range 22-81) with 110 breast masses (mean size1.97±1.38cm, range0.6-8.5) were included in this study. Of the 110 breast masses, 64/110 (58.18%) were benign, 46/110 (41.82%) were malignant. Compared with conventional ultrasound, a significant increase in specificity (0% to 53.12%, P<.001), accuracy (41.81% to70.19%, P<.001) were noted, with no statistically significant decrease on sensitivity(100% to 95.65% ,P=.48). According to S-Detect-guided US BI-RADS re-classification, 30 out of 110 (27.27%) breast lesions underwent a correct change in clinical management, 74of 110 (67.27%) breast lesions underwent no change and 6 of 110 (5.45%) breast lesions underwent an incorrect change in clinical management. The biopsy rate decreased from 100% to 67.27 % (P<.001).Benign masses among subcategory 4a had higher rates of possibly benign assessment on S-Detect for the US only (60% to 0%, P<.001). CONCLUSIONS S-Detect can be used as an additional diagnostic tool to improve the specificity and accuracy in clinical practice. S-Detect have the potential to be used in downgrading benign masses misclassified as BI-RADS category 4 on US by radiologist, and may reduce unnecessary breast biopsy. CLINICALTRIAL none


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Said Boumaraf ◽  
Xiabi Liu ◽  
Chokri Ferkous ◽  
Xiaohong Ma

Mammography remains the most prevalent imaging tool for early breast cancer screening. The language used to describe abnormalities in mammographic reports is based on the Breast Imaging Reporting and Data System (BI-RADS). Assigning a correct BI-RADS category to each examined mammogram is a strenuous and challenging task for even experts. This paper proposes a new and effective computer-aided diagnosis (CAD) system to classify mammographic masses into four assessment categories in BI-RADS. The mass regions are first enhanced by means of histogram equalization and then semiautomatically segmented based on the region growing technique. A total of 130 handcrafted BI-RADS features are then extracted from the shape, margin, and density of each mass, together with the mass size and the patient’s age, as mentioned in BI-RADS mammography. Then, a modified feature selection method based on the genetic algorithm (GA) is proposed to select the most clinically significant BI-RADS features. Finally, a back-propagation neural network (BPN) is employed for classification, and its accuracy is used as the fitness in GA. A set of 500 mammogram images from the digital database for screening mammography (DDSM) is used for evaluation. Our system achieves classification accuracy, positive predictive value, negative predictive value, and Matthews correlation coefficient of 84.5%, 84.4%, 94.8%, and 79.3%, respectively. To our best knowledge, this is the best current result for BI-RADS classification of breast masses in mammography, which makes the proposed system promising to support radiologists for deciding proper patient management based on the automatically assigned BI-RADS categories.


2019 ◽  
Vol 18 ◽  
pp. 153303381882433 ◽  
Author(s):  
Ran Wei ◽  
Kanru Lin ◽  
Wenjun Yan ◽  
Yi Guo ◽  
Yuanyuan Wang ◽  
...  

Objective: Our aim was to propose a preoperative computer-aided diagnosis scheme to differentiate pancreatic serous cystic neoplasms from other pancreatic cystic neoplasms, providing supportive opinions for clinicians and avoiding overtreatment. Materials and Methods: In this retrospective study, 260 patients with pancreatic cystic neoplasm were included. Each patient underwent a multidetector row computed tomography scan and pancreatic resection. In all, 200 patients constituted a cross-validation cohort, and 60 patients formed an independent validation cohort. Demographic information, clinical information, and multidetector row computed tomography images were obtained from Picture Archiving and Communication Systems. The peripheral margin of each neoplasm was manually outlined by experienced radiologists. A radiomics system containing 24 guideline-based features and 385 radiomics high-throughput features was designed. After the feature extraction, least absolute shrinkage selection operator regression was used to select the most important features. A support vector machine classifier with 5-fold cross-validation was applied to build the diagnostic model. The independent validation cohort was used to validate the performance. Results: Only 31 of 102 serous cystic neoplasm cases in this study were recognized correctly by clinicians before the surgery. Twenty-two features were selected from the radiomics system after 100 bootstrapping repetitions of the least absolute shrinkage selection operator regression. The diagnostic scheme performed accurately and robustly, showing the area under the receiver operating characteristic curve = 0.767, sensitivity = 0.686, and specificity = 0.709. In the independent validation cohort, we acquired similar results with receiver operating characteristic curve = 0.837, sensitivity = 0.667, and specificity = 0.818. Conclusion: The proposed radiomics-based computer-aided diagnosis scheme could increase preoperative diagnostic accuracy and assist clinicians in making accurate management decisions.


2012 ◽  
Vol 81 (7) ◽  
pp. 1532-1538 ◽  
Author(s):  
Uta Preim ◽  
Sylvia Glaßer ◽  
Bernhard Preim ◽  
Frank Fischbach ◽  
Jens Ricke

2013 ◽  
Vol 39 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Neha Bhooshan ◽  
Maryellen Giger ◽  
Milica Medved ◽  
Hui Li ◽  
Abbie Wood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document