scholarly journals A NOTE ON THE EXISTENCE OF A GROUND STATE SOLUTION TO A FRACTIONAL SCHRÖDINGER EQUATION

2013 ◽  
Vol 67 (1) ◽  
pp. 227-236 ◽  
Author(s):  
Yonggeun CHO ◽  
Tohru OZAWA
2014 ◽  
Vol 14 (4) ◽  
Author(s):  
Xiang-dong Fang ◽  
Zhi-qing Han

AbstractIn this paper we are concerned with the quasilinear Schrödinger equation−Δu + V(x)u − Δ(uwhere N ≥ 3, 4 < p < 4N/(N − 2), and V(x) and q(x) go to some positive limits V


2021 ◽  
pp. 1-19
Author(s):  
Jing Zhang ◽  
Lin Li

In this paper, we consider the following Schrödinger equation (0.1) − Δ u − μ u | x | 2 + V ( x ) u = K ( x ) | u | 2 ∗ − 2 u + f ( x , u ) , x ∈ R N , u ∈ H 1 ( R N ) , where N ⩾ 4, 0 ⩽ μ < μ ‾, μ ‾ = ( N − 2 ) 2 4 , V is periodic in x, K and f are asymptotically periodic in x, we take advantage of the generalized Nehari manifold approach developed by Szulkin and Weth to look for the ground state solution of (0.1).


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Jing Chen ◽  
Zu Gao

Abstract We consider the following nonlinear fractional Schrödinger equation: $$ (-\triangle )^{s} u+V(x)u=g(u) \quad \text{in } \mathbb{R} ^{N}, $$ ( − △ ) s u + V ( x ) u = g ( u ) in  R N , where $s\in (0, 1)$ s ∈ ( 0 , 1 ) , $N>2s$ N > 2 s , $V(x)$ V ( x ) is differentiable, and $g\in C ^{1}(\mathbb{R} , \mathbb{R} )$ g ∈ C 1 ( R , R ) . By exploiting the minimization method with a constraint over Pohoz̆aev manifold, we obtain the existence of ground state solutions. With the help of Pohoz̆aev identity we also process the existence of the least energy solutions for the above equation. Our results improve the existing study on this nonlocal problem with Berestycki–Lions type nonlinearity to the one that does not need the oddness assumption.


1997 ◽  
Vol 12 (16) ◽  
pp. 1127-1130 ◽  
Author(s):  
M. D. Pollock

By demanding the existence of a globally invariant ground-state solution of the Wheeler–De Witt equation (Schrödinger equation) for the wave function of the Universe Ψ, obtained from the heterotic superstring theory, in the four-dimensional Friedmann space-time, we prove that the cosmological vacuum energy has to be zero.


2012 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Die Hu ◽  
Xianhua Tang ◽  
Qi Zhang

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> which are almost necessary, we prove that problem <inline-formula><tex-math id="M6">\begin{document}$ (\rm P) $\end{document}</tex-math></inline-formula> has a nontrivial solution <inline-formula><tex-math id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M8">\begin{document}$ \bar{v} = G(\bar{u}) $\end{document}</tex-math></inline-formula> is a ground state solution of the following problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M9">\begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document}</tex-math></inline-formula>. We also give a minimax characterization for the ground state solution <inline-formula><tex-math id="M10">\begin{document}$ \bar{v} $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document