nodal solution
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 3)

Author(s):  
Hui Guo ◽  
Ronghua Tang ◽  
Tao Wang

This paper deals with the following Schr\“odinger-Poisson system \begin{equation}\left\{\begin{aligned} &-\Delta u+u+ \lambda\phi u=f(u)\quad\mbox{in }\mathbb{R}^3,\\ &-\Delta \phi=u^{2}\quad\mbox{in }\mathbb{R}^3, \end{aligned}\right.\end{equation} where $\lambda>0$ and $f(u)$ is a nonlinear term asymptotically cubic at the infinity. Taking advantage of the Miranda theorem and deformation lemma, we combine some new analytic techniques to prove that for each positive integer $k,$ system \eqref{zhaiyaofc} admits a radial nodal solution $U_k^{\lambda}$, which has exactly $k+1$ nodal domains and the corresponding energy is strictly increasing in $k$. Moreover, for any sequence $\{\lambda_n\}\to 0_+$ as $n\to\infty,$ up to a subsequence, $U_k^{\lambda_n}$ converges to some $U_k^0\in H_r^1(\mathbb{R}^3)$, which is a radial nodal solution with exactly $k+1$ nodal domains of \eqref{zhaiyaofc} for $\lambda=0 $. These results give an affirmative answer to the open problem proposed in [Kim S, Seok J. Commun. Contemp. Math., 2012] for the Schr\”odinger-Poisson system with an asymptotically cubic term.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jianqing Chen ◽  
Qian Zhang

<p style='text-indent:20px;'>This paper is concerned with the following quasilinear Schrödinger system in the entire space <inline-formula><tex-math id="M1">\begin{document}$ \mathbb R^{N}(N\geq3) $\end{document}</tex-math></inline-formula>:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{\begin{aligned} &amp;-\Delta u+A(x)u+\frac{k}{2}\triangle(u^{2})u = \frac{2\alpha }{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta},\\ &amp;-\Delta v+Bv+\frac{k}{2}\triangle(v^{2})v = \frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v,\\ &amp; u(x)\to 0,\ \ v(x)\to 0\ \ \hbox{as}\ |x|\to \infty,\end{aligned}\right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M2">\begin{document}$ \alpha,\beta&gt;1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ 2&lt;\alpha+\beta&lt;2^* = \frac{2N}{N-2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ k &gt;0 $\end{document}</tex-math></inline-formula> is a parameter. By using the principle of symmetric criticality and the moser iteration, for any given integer <inline-formula><tex-math id="M5">\begin{document}$ \xi\geq2 $\end{document}</tex-math></inline-formula>, we construct a non-radially symmetrical nodal solution with its <inline-formula><tex-math id="M6">\begin{document}$ 2\xi $\end{document}</tex-math></inline-formula> nodal domains. Our results can be looked on as a generalization to results by Alves, Wang and Shen (Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 259 (2015) 318-343).</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Massimo Grossi

<p style='text-indent:20px;'>In this survey we discuss old and new results on the number of critical points of solutions of the problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE0.1"> \begin{document}$ \begin{equation} \begin{cases} -\Delta u = f(u)&amp;in\ \Omega\\ u = 0&amp;on\ \partial \Omega \end{cases} \;\;\;\;\;\;\;\;(0.1)\end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset \mathbb{R}^N $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ N\ge2 $\end{document}</tex-math></inline-formula> is a smooth bounded domain. Both cases where <inline-formula><tex-math id="M3">\begin{document}$ u $\end{document}</tex-math></inline-formula> is a positive or nodal solution will be considered.</p>


Author(s):  
Denis Bonheure ◽  
Ederson Moreira dos Santos ◽  
Enea Parini ◽  
Hugo Tavares ◽  
Tobias Weth

Abstract We consider nonlinear 2nd-order elliptic problems of the type $$\begin{align*} & -\Delta u=f(u)\ \textrm{in}\ \Omega, \qquad u=0\ \textrm{on}\ \partial \Omega, \end{align*}$$where $\Omega $ is an open $C^{1,1}$–domain in ${{\mathbb{R}}}^N$, $N\geq 2$, under some general assumptions on the nonlinearity that include the case of a sublinear pure power $f(s)=|s|^{p-1}s$ with $0&lt;p&lt;1$ and of Allen–Cahn type $f(s)=\lambda (s-|s|^{p-1}s)$ with $p&gt;1$ and $\lambda&gt;\lambda _2(\Omega )$ (the second Dirichlet eigenvalue of the Laplacian). We prove the existence of a least energy nodal (i.e., sign changing) solution and of a nodal solution of mountain-pass type. We then give explicit examples of domains where the associated levels do not coincide. For the case where $\Omega $ is a ball or annulus and $f$ is of class $C^1$, we prove instead that the levels coincide and that least energy nodal solutions are nonradial but axially symmetric functions. Finally, we provide stronger results for the Allen–Cahn type nonlinearities in case $\Omega $ is either a ball or a square. In particular, we give a complete description of the solution set for $\lambda \sim \lambda _2(\Omega )$, computing the Morse index of the solutions.


Sign in / Sign up

Export Citation Format

Share Document