scholarly journals TWO STEP EXPLICIT FINITE ELEMENT METHOD FOR HIGH REYNOLDS NUMBER VISCOUS FLUID FLOW

1983 ◽  
Vol 1983 (329) ◽  
pp. 127-140 ◽  
Author(s):  
Mutsuto KAWAHARA ◽  
Hirokazu HIRANO
2017 ◽  
Vol 14 (06) ◽  
pp. 1750068 ◽  
Author(s):  
Lucy T. Zhang

Immersed methods are considered as a class of nonboundary-fitted meshing technique for simulating fluid–structure interactions. However, the conventional approach of coupling the fluid and solid domains, as in the immersed boundary method and the immersed finite element method, often cannot handle high Reynolds number flows interacting with moving and deformable solids. As the solid dynamics is imposed by the fluid dynamics, it often leads to unrealistically large deformation of the solid in cases of high Reynolds number flows. The first attempt in resolving this issue was proposed in the modified immersed finite element method (mIFEM), however, some terms were determined heuristically. In this paper, we provide a full and rigorous derivation for the mIFEM with corrections to the previously proposed terms, which further extends the accuracy of the algorithm. In the “swapped” coupling logic, we solve for the dynamics of the solid, and then numerically impose it to the background fluid, which allows the solid to control its own dynamics and governing laws instead of following that of the fluid. A few examples including a biomedical engineering application are shown to demonstrate the capability in handling large Reynolds number flows using the derived mIFEM.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 5 ◽  
Author(s):  
Bilen Emek Abali

Despite its numerical challenges, finite element method is used to compute viscous fluid flow. A consensus on the cause of numerical problems has been reached; however, general algorithms—allowing a robust and accurate simulation for any process—are still missing. Either a very high computational cost is necessary for a direct numerical solution (DNS) or some limiting procedure is used by adding artificial dissipation to the system. These stabilization methods are useful; however, they are often applied relative to the element size such that a local monotonous convergence is challenging to acquire. We need a computational strategy for solving viscous fluid flow using solely the balance equations. In this work, we present a general procedure solving fluid mechanics problems without use of any stabilization or splitting schemes. Hence, its generalization to multiphysics applications is straightforward. We discuss emerging numerical problems and present the methodology rigorously. Implementation is achieved by using open-source packages and the accuracy as well as the robustness is demonstrated by comparing results to the closed-form solutions and also by solving well-known benchmarking problems.


Sign in / Sign up

Export Citation Format

Share Document