scholarly journals Donor-Specific Antibodies in Kidney Transplant Recipients

2017 ◽  
Vol 13 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Rubin Zhang

Donor-specific antibodies have become an established biomarker predicting antibody-mediated rejection. Antibody-mediated rejection is the leading cause of graft loss after kidney transplant. There are several phenotypes of antibody-mediated rejection along post-transplant course that are determined by the timing and extent of humoral response and the various characteristics of donor-specific antibodies, such as antigen classes, specificity, antibody strength, IgG subclasses, and complement binding capacity. Preformed donor-specific antibodies in sensitized patients can trigger hyperacute rejection, accelerated acute rejection, and early acute antibody-mediated rejection. De novo donor-specific antibodies are associated with late acute antibody-mediated rejection, chronic antibody-mediated rejection, and transplant glomerulopathy. The pathogeneses of antibody-mediated rejection include not only complement-dependent cytotoxicity, but also complement-independent pathways of antibody-mediated cellular cytotoxicity and direct endothelial activation and proliferation. The novel assay for complement binding capacity has improved our ability to predict antibody-mediated rejection phenotypes. C1q binding donor-specific antibodies are closely associated with acute antibody-mediated rejection, more severe graft injuries, and early graft failure, whereas C1q nonbinding donor-specific antibodies correlate with subclinical or chronic antibody-mediated rejection and late graft loss. IgG subclasses have various abilities to activate complement and recruit effector cells through the Fc receptor. Complement binding IgG3 donor-specific antibodies are frequently associated with acute antibody-mediated rejection and severe graft injury, whereas noncomplement binding IgG4 donor-specific antibodies are more correlated with subclinical or chronic antibody-mediated rejection and transplant glomerulopathy. Our in-depth knowledge of complex characteristics of donor-specific antibodies can stratify the patient’s immunologic risk, can predict distinct phenotypes of antibody-mediated rejection, and hopefully, will guide our clinical practice to improve the transplant outcomes.

2021 ◽  
Vol 12 ◽  
Author(s):  
Marta Crespo ◽  
Laura Llinàs-Mallol ◽  
Dolores Redondo-Pachón ◽  
Carrie Butler ◽  
Javier Gimeno ◽  
...  

BackgroundCorrelation between antibody-mediated rejection (ABMR) and circulating HLA donor-specific antibodies (HLA-DSA) is strong but imperfect in kidney transplant (KT) recipients, raising the possibility of undetected HLA-DSA or non-HLA antibodies contributing to ABMR. Detailed evaluation of the degree of HLA matching together with the identification of non-HLA antibodies in KT may help to decipher the antibody involved.MethodsWe retrospectively assessed patients with transplant biopsies scored following Banff’15 classification. Pre- and post-transplant serum samples were checked for HLA and non-HLA antibodies [MICA-Ab, angiotensin-II type-1-receptor (AT1R)-Ab, endothelin-1 type-A-receptor (ETAR)-Ab and crossmatches with primary aortic endothelial cells (EC-XM)]. We also analyzed HLA epitope mismatches (HLA-EM) between donors and recipients to explore their role in ABMR histology (ABMRh) with and without HLA-DSA.ResultsOne-hundred eighteen patients with normal histology (n = 19), ABMRh (n = 52) or IFTA (n = 47) were studied. ABMRh patients were HLA-DSApos (n = 38, 73%) or HLA-DSAneg (n = 14, 27%). Pre-transplant HLA-DSA and AT1R-Ab were more frequent in ABMRh compared with IFTA and normal histology cases (p = 0.006 and 0.003), without differences in other non-HLA antibodies. Only three ABMRhDSAneg cases showed non-HLA antibodies. ABMRhDSAneg and ABMRhDSApos cases showed similar biopsy changes and graft-survival. Both total class II and DRB1 HLA-EM were associated with ABMRhDSApos but not with ABMRhDSAneg. Multivariate analysis showed that pre-transplant HLA-DSA (OR: 3.69 [1.31–10.37], p = 0.013) and AT1R-Ab (OR: 5.47 [1.78–16.76], p = 0.003) were independent predictors of ABMRhDSApos.ConclusionsIn conclusion, pre-transplant AT1R-Ab is frequently found in ABMRhDSApos patients. However, AT1R-Ab, MICA-Ab, ETAR-Ab or EC-XM+ are rarely found among ABMRhDSAneg patients. Pre-transplant AT1R-Ab may act synergistically with preformed or de novo HLA-DSA to produce ABMRhDSApos but not ABMRhDSAneg. HLA epitope mismatch associates with ABMRhDSApos compared with ABMRhDSAneg, suggesting factors other than HLA are responsible for the damage.


Renal Failure ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Masahiko Yazawa ◽  
Orsolya Cseprekal ◽  
Ryan A. Helmick ◽  
Manish Talwar ◽  
Vasanthi Balaraman ◽  
...  

2021 ◽  
Vol 32 (12) ◽  
pp. 3231-3251
Author(s):  
Baptiste Lamarthée ◽  
Carole Burger ◽  
Charlotte Leclaire ◽  
Emilie Lebraud ◽  
Aniela Zablocki ◽  
...  

BackgroundAfter kidney transplantation, donor-specific antibodies against human leukocyte antigen donor-specific antibodies (HLA-DSAs) drive antibody-mediated rejection (ABMR) and are associated with poor transplant outcomes. However, ABMR histology (ABMRh) is increasingly reported in kidney transplant recipients (KTRs) without HLA-DSAs, highlighting the emerging role of non-HLA antibodies (Abs).MethodsW e designed a non-HLA Ab detection immunoassay (NHADIA) using HLA class I and II–deficient glomerular endothelial cells (CiGEnCΔHLA) that had been previously generated through CRISPR/Cas9-induced B2M and CIITA gene disruption. Flow cytometry assessed the reactivity to non-HLA antigens of pretransplantation serum samples from 389 consecutive KTRs. The intensity of the signal observed with the NHADIA was associated with post-transplant graft histology assessed in 951 adequate biopsy specimens.ResultsW e sequentially applied CRISPR/Cas9 to delete the B2M and CIITA genes to obtain a CiGEnCΔHLA clone. CiGEnCΔHLA cells remained indistinguishable from the parental cell line, CiGEnC, in terms of morphology and phenotype. Previous transplantation was the main determinant of the pretransplantation NHADIA result (P<0.001). Stratification of 3-month allograft biopsy specimens (n=298) according to pretransplantation NHADIA tertiles demonstrated that higher levels of non-HLA Abs positively correlated with increased glomerulitis (P=0.002), microvascular inflammation (P=0.003), and ABMRh (P=0.03). A pretransplantation NHADIA threshold of 1.87 strongly discriminated the KTRs with the highest risk of ABMRh (P=0.005, log-rank test). A multivariate Cox model confirmed that NHADIA status and HLA-DSAs were independent, yet synergistic, predictors of ABMRh.ConclusionThe NHADIA identifies non-HLA Abs and strongly predicts graft endothelial injury independent of HLA-DSAs.


Sign in / Sign up

Export Citation Format

Share Document