Rapid In-situ XANES Imaging of Chemical Gradients during Catalytic Partial Oxidation of Methane

2021 ◽  
Author(s):  
Saba Alizadehfanaloo ◽  
Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2495
Author(s):  
Daniela Pietrogiacomi ◽  
Maria Cristina Campa ◽  
Ida Pettiti ◽  
Simonetta Tuti ◽  
Giulia Luccisano ◽  
...  

Ni/ZrO2 catalysts, active and selective for the catalytic partial oxidation of methane to syngas (CH4-CPO), were prepared by the dry impregnation of zirconium oxyhydroxide (Zhy) or monoclinic ZrO2 (Zm), calcination at 1173 K and activation by different procedures: oxidation-reduction (ox-red) or direct reduction (red). The characterization included XRD, FESEM, in situ FTIR and Raman spectroscopies, TPR, and specific surface area measurements. Catalytic activity experiments were carried out in a flow apparatus with a mixture of CH4:O2 = 2:1 in a short contact time. Compared to Zm, Zhy favoured the formation of smaller NiO particles, implying a higher number of Ni sites strongly interacting with the support. In all the activated Ni/ZrO2 catalysts, the Ni–ZrO2 interaction was strong enough to limit Ni aggregation during the catalytic runs. The catalytic activity depended on the activation procedures; the ox-red treatment yielded very active and stable catalysts, whereas the red treatment yielded catalysts with oscillating activity, ascribed to the formation of Niδ+ carbide-like species. The results suggested that Ni dispersion was not the main factor affecting the activity, and that active sites for CH4-CPO could be Ni species at the boundary of the metal particles in a specific configuration and nuclearity.


2007 ◽  
Vol 16 (3) ◽  
pp. 316-321 ◽  
Author(s):  
Tinghua Wu ◽  
Dongmin Lin ◽  
Ying Wu ◽  
Xiaoping Zhou ◽  
Qiangu Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document