scholarly journals New Numerical Algorithm for the Multi-Layer Shallow Water Equations Based on the Hyperbolic Decomposition and the CABARET Scheme

2019 ◽  
Vol 35 (6) ◽  
Author(s):  
V. M. Goloviznin ◽  
Pavel A. Maiorov ◽  
Petr A. Maiorov ◽  
A. V. Solovjov ◽  
◽  
...  
2019 ◽  
Vol 26 (6) ◽  
Author(s):  
V. M. Goloviznin ◽  
Pavel A. Maiorov ◽  
Petr A. Maiorov ◽  
A. V. Solovjov ◽  
◽  
...  

2015 ◽  
Vol 8 (4) ◽  
pp. 634-650 ◽  
Author(s):  
Dongyang Kuang ◽  
Long Lee

AbstractWe present a conservative formulation and a numerical algorithm for the reduced-gravity shallow-water equations on a beta plane, subjected to a constant wind forcing that leads to the formation of double-gyre circulation in a closed ocean basin. The novelty of the paper is that we reformulate the governing equations into a nonlinear hyperbolic conservation law plus source terms. A second-order fractional-step algorithm is used to solve the reformulated equations. In the first step of the fractional-step algorithm, we solve the homogeneous hyperbolic shallow-water equations by the wave-propagation finite volume method. The resulting intermediate solution is then used as the initial condition for the initial-boundary value problem in the second step. As a result, the proposed method is not sensitive to the choice of viscosity and gives high-resolution results for coarse grids, as long as the Rossby deformation radius is resolved. We discuss the boundary conditions in each step, when no-slip boundary conditions are imposed to the problem. We validate the algorithm by a periodic flow on an f-plane with exact solutions. The order-of-accuracy for the proposed algorithm is tested numerically. We illustrate a quasi-steady-state solution of the double-gyre model via the height anomaly and the contour of stream function for the formation of double-gyre circulation in a closed basin. Our calculations are highly consistent with the results reported in the literature. Finally, we present an application, in which the double-gyre model is coupled with the advection equation for modeling transport of a pollutant in a closed ocean basin.


Author(s):  
Xiao-Hua Zhu ◽  
Xiao-Hua Zhu ◽  
Ze-Nan Zhu ◽  
Ze-Nan Zhu ◽  
Xinyu Guo ◽  
...  

A coastal acoustic tomography (CAT) experiment for mapping the tidal currents in the Zhitouyang Bay was successfully carried out with seven acoustic stations during July 12 to 13, 2009. The horizontal distributions of tidal current in the tomography domain are calculated by the inverse analysis in which the travel time differences for sound traveling reciprocally are used as data. Spatial mean amplitude ratios M2 : M4 : M6 are 1.00 : 0.15 : 0.11. The shallow-water equations are used to analyze the generation mechanisms of M4 and M6. In the deep area, velocity amplitudes of M4 measured by CAT agree well with those of M4 predicted by the advection terms in the shallow water equations, indicating that M4 in the deep area where water depths are larger than 60 m is predominantly generated by the advection terms. M6 measured by CAT and M6 predicted by the nonlinear quadratic bottom friction terms agree well in the area where water depths are less than 20 m, indicating that friction mechanisms are predominant for generating M6 in the shallow area. Dynamic analysis of the residual currents using the tidally averaged momentum equation shows that spatial mean values of the horizontal pressure gradient due to residual sea level and of the advection of residual currents together contribute about 75% of the spatial mean values of the advection by the tidal currents, indicating that residual currents in this bay are induced mainly by the nonlinear effects of tidal currents.


Sign in / Sign up

Export Citation Format

Share Document