ocean basin
Recently Published Documents


TOTAL DOCUMENTS

762
(FIVE YEARS 162)

H-INDEX

52
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Carol A. Stein ◽  
Seth Stein ◽  
Molly M. Gallahue ◽  
Reece P. Elling

ABSTRACT Classic models proposed that continental rifting begins at hotspots—domal uplifts with associated magmatism—from which three rift arms extend. Rift arms from different hotspots link up to form new plate boundaries, along which the continent breaks up, generating a new ocean basin and leaving failed arms, termed aulacogens, within the continent. In subsequent studies, hotspots became increasingly viewed as manifestations of deeper upwellings or plumes, which were the primary cause of continental rifting. We revisited this conceptual model and found that it remains useful, though some aspects require updates based on subsequent results. First, the rift arms are often parts of boundaries of transient microplates accommodating motion between the major plates. The microplates form as continents break up, and they are ultimately incorporated into one of the major plates, leaving identifiable fossil features on land and/or offshore. Second, much of the magmatism associated with rifting is preserved either at depth, in underplated layers, or offshore. Third, many structures formed during rifting survive at the resulting passive continental margins, so study of one can yield insight into the other. Fourth, hotspots play at most a secondary role in continental breakup, because most of the associated volcanism reflects plate divergence, so three-arm junction points may not reflect localized upwelling of a deep mantle plume.


2022 ◽  
Author(s):  
Ian W.D. Dalziel ◽  
Lawrence A. Lawver

ABSTRACT The original location and tectonic setting of the prominent Paleocene dike swarm in the British Isles are reconstructed for a “tight fit” of the North Atlantic region prior to any Cenozoic opening of the ocean basin between Greenland and Europe. The present-day northwest-southeast–oriented swarm originally trended toward southern Greenland and the locations of magmatic rocks of comparable age along the eastern and western margins of Greenland and approximately the position of the Iceland hotspot at 70–60 Ma in a “fixed hotspot” model. This raises the possibility that the northeast-southwest–oriented extensional stress field in which the dikes and associated central igneous complexes were emplaced may have been generated by impingement on the base of the lithosphere by a rising plume beneath present-day West Greenland. It is speculated, on the basis of seismic tomography and three-dimensional modeling, that the Paleocene igneous activity in the British Isles may have resulted from flow of a hot “finger” of upper mantle outward from the plume, perhaps controlled by preexisting lithospheric structures and the distant location of a second Paleocene volcanic province in central Europe.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 83-96
Author(s):  
M. RAJEEVAN

The climatic interactions among deep convection, sea surface temperature and radiation in the Asian monsoon region have been examined using various satellite-derived data sets of the period 1983-90. Annual average Frequency of Deep Convection (FDC) is maximum over the equatorial east Indian ocean and adjoining west Pacific and Indonesian region. Maximum FDC zone shifts to Bay of Bengal during the monsoon (June-September) season.   There is weak relationship between the variations in FDC and SST in the Indian ocean. Deep convective activity was suppressed over most of the tropical Indian ocean during El Nino of 1987 in spite of warmer SSTs. The pattern of inter-annual variation between FDC and SST behaves differently in the Indian ocean basin as compared to the Pacific ocean basin. Deep convective clouds interact with radiation very effectively in the Asian monsoon region to cause large net negative cloud radiative forcing. Variation in FDC explains more than 70% of the variation in surface short-wave cloud radiative forcing (SWCRF) and long wave cloud radiative forcing (LWCRF) in the atmosphere.   On inter-annual scale, warmer SSTs may not necessarily increase deep convection in the Indian ocean. However, the inter-annual variation of deep convective clouds influences significantly the radiative budget of the surface-atmosphere system in the Asian monsoon region. The satellite observations suggest that warmer SSTs in the Indian ocean might have resulted from an increase in the absorbed solar radiation at the surface due to a reduction in deep convective cloud cover.


2021 ◽  
Author(s):  
Felipe Vittori ◽  
José Azcona ◽  
Irene Eguinoa ◽  
Oscar Pires ◽  
Alberto Rodríguez ◽  
...  

Abstract. This paper describes the results of a wave tank test campaign of a 1/49 scaled SATH 10MW INNWIND floating platform. The Software-in-the-Loop (SiL) hybrid method was used to include the wind turbine thrust and the in-plane rotor moments My – Mz. Experimental results are compared with a numerical model developed in OpenFAST of the floating wind turbine. The tank test campaign was carried out in the scaled model tested at the Deep Ocean Basin from the Lir National Ocean TF at Cork, Ireland. This floating substructure design was adapted by Saitec to support the 10MW INNWIND wind turbine within the ARCWIND project with the aim of withstanding the environmental conditions of the European Atlantic Area region. CENER provided the wind turbine controller specially designed for the SATH 10MW configuration. A description of the experimental set up, force actuator configuration and the numeric aerodynamic parameters are provided in this work. The most relevant experimental results under wind and wave loading are showed in time series and frequency domain. The influence of the submerged geometry variations in the pitch natural frequency is discussed. The paper shows the simulation of a case with rated wind speed, where the tilted geometry for the computation of the hydrostatic and hydrodynamic properties of the submerged substructure is considered. This case provides a better agreement of the pitch natural frequency with the experiments, than a equivalent simulation using the undisplaced geometry mesh for the computation of the hydrodynamic and hydrostatic properties.


Author(s):  
Rui Huang ◽  
Wenshou Tian ◽  
Kai Qie ◽  
Fei Xie ◽  
Shiyan Zhang ◽  
...  
Keyword(s):  

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1605
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza

Contrasting effects of the tropical Indian and Pacific Oceans on the atmospheric circulation and rainfall interannual variations over South America during southern winter are assessed considering the effects of the warm Indian Ocean basin-wide (IOBW) and El Niño (EN) events, and of the cold IOBW and La Niña events, which are represented by sea surface temperature-based indices. Analyses are undertaken using total and partial correlations. When the effects of the two warm events are isolated from each other, the contrasts between the associated rainfall anomalies in most of South America become accentuated. In particular, EN relates to anomalous wet conditions, and the warm IOBW event to opposite conditions in extensive areas of the 5° S–25° S band. These effects in the 5° S–15° S sector are due to the anomalous regional Hadley cells, with rising motions in this band for the EN and sinking motions for the warm IOBW event. Meanwhile, in subtropical South America, the opposite effects of the EN and warm IOBW seem to be due to the presence of anomalous anticyclone and cyclone and associated moisture transport, respectively. These opposite effects of the warm IOBW and EN events on the rainfall in part of central South America might explain the weak rainfall relation in this region to the El Niño–Southern Oscillation (ENSO). Our results emphasize the important role of the tropical Indian Ocean in the South American climate and environment during southern winter.


MAUSAM ◽  
2021 ◽  
Vol 57 (1) ◽  
pp. 165-196
Author(s):  
D. R. SIKKA

lkj & mRrjh fgUn egklkxj esa m".kdfVca/kh pØokrksa ij fd, x, vuqla/kku xr 150 o"kksZa esa fofHkUu pj.kksa ls xqtjs gSa vkSj vf/kd rFkk csgrj izs{k.kksa dks fodflr djus ds fy, izkS|ksfxdh ds :Ik es bldk fodkl fd;k x;k gSA 20oha 'krkCnh  ds e/; rd leqnz esa bl vkinkdkjh ifj?kVuk ds cuus vkSj blds rhoz gksus dh tkudkjh iksrksa esa gh dqN gn rd fojyrk  ls izkIr gksus okys izs{k.kksa ds ek/;e ls feyrh Fkh vkSj blfy, 1960 ds n’kd rd Hkkjr esa fd, x, vf/kdka’k vuqla/kku v/;;uksa esa pØokrksa ds tyok;q foKku] mudh /kjkryh; lajpuk] mudh xfr vkSj leqnz esa tgktksa dks ig¡qpkusa okyh {kfr dks vuns[kk djus okys fu;eksa ij vf/kd cy fn;k x;k FkkA ekSle jsMkj] mifjru ok;q ifjKkiuksa] vuqla/kku ok;q;ku losZ{k.k ekSle mixzgksa vkSj daI;wVjksa ds ek/;e ls izkIr dh xbZ ubZ ok;qeaMyh; izks|ksfxdh ds izLrqrhdj.k ls 1950 ds n’kd ls ysdj 1980 ds n’kd ds nkSjku fofHkUu ns’kksa ds m".kdfVca/kh pØokr vuqla/kku esa vk’p;Ztud :Ik ls ifjorZu vk;k gSA bl vof/k esa m".kdfVca/kh pØokrksa ds laiw.kZ mRifRr pØ dk izfr:i.k djus ds fy, lS)kafrd v/;;uksa vkSj daI;wVj fun’kksaZ ds fodkl esa lq/kkj ns[kk x;k gSA bl vof/k esa m".kdfVca/kh pØokr ds ekxZ dk iwokZuqeku yxkuk Hkh vuqla/kku dk ,d {ks= cu x;k gS vkSj 1950 ds n’kd ls ysdj 1980 ds n’kd ds nkSjku tyok;q foKku] flukfIVd lkaf[;dh; vkSj xfrdh; i)fr;ksa ij vk/kkfjr rduhdksa ds izdkjksa esa fujarj fodkl gqvk gS rFkk bUgsa ekU;rk feyh gSA xr 10 o"kksZa dh vof/k ds nkSjku fodflr ns’kksa esa HkweaMyh; ifjpkyu fun’kksZa esa fufgr ifj"Ñr mPp foHksnu ds fun’kksZa dk fodkl fd;k x;k gS vkSj ikjLifjd fØ;kvksa dh izfØ;k ds :Ik esa bl Ik)fr dk fodkl djus vkSj bldh xfr dk iwokZuqeku yxkus ds fy, budh tk¡p dh xbZ gSA ;s iw.kZ :i ls lgh ikbZ xbZ gSaA Hkkjr esa Hkh bl izdkj ds fodklksa dks viuk;k x;k gSA bl 'kks/k&i= esa m".kdfVca/kh pØokr ds fodkl vkSj bldh xfr esa lfUufgr izR;{k izfØ;kvksa ds laca/k  esa fd, x, izeq[k fodklksa dh lwph miyC/k djkus dk iz;kl fd;k x;k gSA lkekU; :Ik ls HkweaMyh; vuqla/kku ds {ks= esa fd, x, iz;kl fgan egklkxj csflu esa fd, tk jgs v/;;uksa ij dsafnzr jgs gSaA mRrjh fgan egklkxj esa m".kdfVca/kh pØokrksa ds vUr% nl o"khZ; fHkUurkvksa dh tk¡p dh xbZ gS vkSj 1980 ds n’kd ls budh xfr;ksa esa vDlj vR;kf/kd deh ns[kh xbZ gSA fgan egklkxj csflu esa m".k@'khr bulksa dh ?kVukvksa ds e/; dksbZ laca/k ugha ik;k x;k gSA izpaM m".kdfVca/kh pØokrksa ds fodkl vkSj xfr ds fy, vko’;d o`gr eku fLFkfr;ksa dh izÑfr ls lacaf/kr izs{k.kkRed vkSj lS}kafrd ekWMfyax i)fr;ksa esa daI;wVj izfr:i.kksa lfgr izs{k.kkRed vkSj lS)kafrd i)fr;ksa ls fHkUu fHkUu fopkjksa dk irk pyk gSA mRrjh fgan egklkxj csflu esa fd, x, vkSj vf/kd vuqla/kku dh vksj fo’ks"k /;ku nsus dh fn’kk esa dqN lq>ko fn, x, gSaA  Research on tropical cyclones in the north Indian Ocean has passed through different phases in the last 150 years and progress was made as the technology for more and better observations evolved.  Till the middle of the 20th century, the only way of knowing about the formation and intensification of this disastrous phenomenon, while out at sea, was through rather sparse ship observations and hence the climatology of the cyclones, their surface structure, movement and the rules to avoid the damage to shipping at sea were emphasized in most of the research studies in India till 1960s.  Introduction of new atmospheric technologies through weather radars, upper air soundings, weather satellites and computers have brought a phenomenal change in tropical cyclone research in different countries during 1950s to 1980s.  The period also witnessed break-through in theoretical studies and the development of computer models to simulate the complete genesis cycle of tropical cyclones. Predicting the track of tropical cyclone also became an area of active research in this period and a variety of techniques were increasingly developed.  During the last 10 years sophisticated high resolution models embedded within global circulation models have been developed in advanced countries and tested for predicting the development and movement of the system as an interactive process.  In India, too such developments have been adopted.  Within the scope of global research effort in general, the focus of the article is on the studies in north Indian Ocean basin. Inter-decadal variation of tropical cyclones in the north Indian Ocean has been examined and the frequency of their formations have shown  drastic decrease since 1980s.  No connection  is found between the warm/cold ENSO events in the Indian Ocean basin and tropical cyclone frequency in the basin. Observational and theoretical approaches with computer simulations have brought a convergence of views concerning the nature of large-scale conditions needed for development and movement of severe tropical cyclones. Some suggestions are provided for directing special attention toward further research in this area in the north Indian Ocean basin.  


2021 ◽  
pp. 1-35

Abstract Predictability of sea ice during extreme sea ice loss events on subseasonal (daily to weekly) timescales is explored in dynamical forecast models. These extreme sea ice loss events (defined as the 5th percentile of the 5-day change in sea ice extent) exhibit substantial regional and seasonal variability—in the central Arctic Ocean basin, most subseasonal rapid ice loss occurs in the summer, but in the marginal seas, rapid sea ice loss occurs year-round. Dynamical forecast models are largely able to capture the seasonality of these extreme sea ice loss events. In most regions in the summertime, sea ice forecast skill is lower on extreme sea ice loss days than on non-extreme days, despite evidence that links these extreme events to large-scale atmospheric patterns; in the wintertime, the difference between extreme and non-extreme days is less pronounced. In a damped anomaly forecast benchmark estimate, the forecast error remains high following extreme sea ice loss events and does not return to typical error levels for many weeks; this signal is less robust in the dynamical forecast models but still present. Overall, these results suggest that sea ice forecast skill is generally lower during and after extreme sea ice loss events; and that while dynamical forecast models are capable of simulating extreme sea ice loss events with similar characteristics to what we observe, forecast skill from dynamical models is limited by biases in mean state and variability and errors in the initialization.


MAUSAM ◽  
2021 ◽  
Vol 70 (1) ◽  
pp. 57-70
Author(s):  
U. C. MOHANTY ◽  
RAGHU NADIMPALLI ◽  
SHYAMA MOHANTY ◽  
KRISHNA K. OSURI

MAUSAM ◽  
2021 ◽  
Vol 72 (1) ◽  
pp. 187-198
Author(s):  
IRIS C. LIU ◽  
SUZANA J. CAMARGO ◽  
ADAM H. SOBEL

Within the North Indian Ocean basin, tropical cyclone (TC) activity over the Bay of Bengal (BoB) is substantially greater than over the Arabian Sea (AS). The authors attempt to quantify the roles of specific environmental factors in order to understand the reasons for this difference between the two basins. Environmental variables are considered in the basin as a whole and in the immediate times and places at which cyclogenesis and storm intensification occur.The results for the two sub-basins are compared to determine  which environmental variablessignificantly between the sub-basins. A tropical cyclone genesis index (TCGI) is also examined to determine whether the AS- differedBased on that partial success, climatologies of the individual factors that comprise the index are examined to determine which ones are most important in the difference  


Sign in / Sign up

Export Citation Format

Share Document