scholarly journals Excess Gibbs free energy models for studying ionic liquid-H2O binary system

Author(s):  
Chunyan Ma ◽  
Yanxin Wang ◽  
Yunhao Sun ◽  
Xiaohua Lu ◽  
Xiaoyan Ji

In this work, the excess Gibbs free energy models, i.e., non-random two-liquid (NRTL) model, electrolyte NRTL model, and electrolyte NRTL model including new strategies (association or hydration), were used to describe the macroscale properties and interpret the microstructure, clarifying the role of association and hydration in model development, and the enthalpy of mixing of three imidazolium-based IL-H2O systems containing the same cation but different sizes of anions, i.e., Cl−, Br−, and I− were measured for the first time to provide systematic data for model development. The models were developed and evaluated based on the newly measured data and the osmotic coefficient from the literature. The model reflecting the intrinsic mechanism of dissociation and hydration competition gives the best modeling results. The real ionic strength predicted from the identified model was quantitatively correlated with the electrical conductivities.

1976 ◽  
Vol 31 (12) ◽  
pp. 1651-1660 ◽  
Author(s):  
F. Becker ◽  
M. Kiefer ◽  
P. Rhensius ◽  
H. D. Schäfer

Abstract In this paper equilibrium models for the calculation of the excess Gibbs free energy of binary liquid mixtures are developed, the component A of which undergoes chain-forming self-association whilst the component B acts as an 'inert' solvent. It is shown that the extension of the well-known chain-association model of Mecke and Kempter, in which the probability of chain prolongation is assumed to be independent of chain length, is unable to establish satisfactory results because it does not exhibit sufficient unsymmetry. Reduction of the probability of chain growth with in-creasing chain length leads to an improved model with the geometric series replaced by the exponential series. This model, in which only two parameters are used, i. e. the equilibrium constants K for mutual solvation of A and B, and ρ for self-association of A, allows fitting of isothermal experimental GE /R T literature data on cycloalkanol-cycloalkane, alkanol-alkane, and NMF -CCl4 systems within the limits of experimental error. Compared with the two-parameter Wilson equation which gives equally small standard deviations, our equilibrium model has the advantage of allowing passage from GE to HE data and of being applicable to liquid-liquid equilibria.


2007 ◽  
Vol 39 (7) ◽  
pp. 1022-1026 ◽  
Author(s):  
T.E. Vittal Prasad ◽  
N. Venkanna ◽  
Y. Naveen Kumar ◽  
K. Ashok ◽  
N.M. Sirisha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document