molar excess
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 11)

H-INDEX

37
(FIVE YEARS 2)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3143-3143
Author(s):  
Alessandro S Pinheiro ◽  
Douglas E Teixeira ◽  
Alona A. Merkulova ◽  
Keith R. McCrae ◽  
Philip J Rosenthal ◽  
...  

Abstract Human malaria is a complex disease and a leading cause of mortality in children under 5 years of age. Plasmodium falciparum (Pf) is the agent responsible for cerebral malaria. Parasite infected erythrocytes are sequestered in the brain vasculature, disrupting the blood-brain-barrier, and with systemic inflammation leading to progressive brain edema. The precise pathophysiologic mechanism(s) underlying brain swelling in CM is not known. Recent work from our laboratories indicates that there is a role for bradykinin (BK) in fluid transport in human brain microvascular endothelial cells (Front Med 6:75, 2019). We examined the role of bradykinin (BK) in pediatric CM. Initial studies showed recombinant falcipain-2, a cysteine protease contained in the parasite digestive vacuole, was inhibited by high molecular weight kininogen (HK), with an IC 50=36 nM. Further, falcipain-2, but not the related protease falcipain 3, hydrolyzed the chromogenic substrate S2302 (Pro-Phe-Arg-pNA) at pH 7.4 with an 88 nM K m. These results suggest that falcipain-2 has plasma kallikrein-like activity. HK is both an inhibitor and substrate of falcipain-2. Molar excess HK to falcipain-2 (ratio 8:1 to 2:1) blocked the proteolytic activity of the cysteine protease at pH 7.4. Equal molar falcipain-2 to HK (1:1) resulted in kallikrein-like cleavage of HK with stable BK liberation over 1 h. Molar excess falcipain-2 to HK (1:2 and greater) led to progressive HK cleavage into smaller proteins and peptides. The falcipain-2 major cleavages observed by N-terminal sequencing were in Domain 3 of the heavy chain of HK, the cysteine protease inhibitory region (I 292ASFSQNCDIYPGKDF 303, D 320IPTNSPELEETLT 334, and E 412KKIYPTVNCQPLG 425). P. falciparum trophozoite lysates completely hydrolyzed purified and plasma HK into a ~64 kDa heavy chain and ~46 kDa light chain in buffer containing EDTA, pepstatin, and PMSF. The cysteine proteinase inhibitor E64 blocked this cleavage, suggesting that the relevant activity was that of a cysteine protease. Plasma from Kenyan children presenting with CM (fever, parasitemia, coma) had evidence of circulating cHK, indicative of BK released from HK. Forty percent (8 of 20) of CM patients had no intact 120 kDa HK at hospital entry. In contrast, only 16% (3 of 8) of children with uncomplicated malaria had detectable cHK. In CM patients, the HK level before antimalarial treatment (58 ± 3.9 µg/ml) was significantly lower than the value after clinical recovery (69 ± 3.6 µg/ml; p<0.04) as measured by competitive ELISA. We also examined the roles of BK and HK in experimental cerebral malaria. 10 6 infected red blood cells with P. berghei ANKA were injected intraperitoneally into wild-type (C57BL/6) and total kininogen deficient (kgn1 -/-) C57BL/6 mice. The level of parasitemia on day 5 post-infection was ≥ 8% for both groups of mice (Figure 1). The kgn1 -/- mice had protected neuronal function measured by SHIRPA score relative to wild-type mice. Cerebral edema detected in wild- type mice by Evans Blue dye extravasation test was nearly completely attenuated in kgn1 -/- mice. Corroborative studies were performed in BK B2 receptor deleted (bdkrb2 -/-) mice. In mice with 15% parasitemia for both genotypes, there was significantly less neurologic function deterioration and a 30% reduction in cerebral Evans blue extravasation into brain parenchyma in the bdkrb2 -/- mice. These data strongly suggest that falcipain-2 liberates BK from HK by acting like plasma kallikrein and in high concentrations destroys HK's cysteine protease inhibitory region. Some children with CM have in vivo evidence of prior HK proteolysis. Total kininogen deficiency protects mice from lethal experimental CM. Taken together, these data suggest that bradykinin is a proximal mediator of cerebral malaria. Figure 1 Figure 1. Disclosures McCrae: Dova, Novartis, Rigel, and Sanofi Genzyme: Consultancy; Sanofi, Novartis, Alexion, and Johnson & Johnson: Consultancy, Honoraria.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1488
Author(s):  
Valeriy Meshalkin ◽  
Valentin Sapunov ◽  
Roman Kozlovskiy ◽  
Ivan Kozlovskiy ◽  
Dmitry Staroverov ◽  
...  

It was experimentally established that the dependence of the partial pressure of methanol on the molar fraction of methanol in oil shows a pronounced negative deviation from Raoul’s law, which significantly changes the idea of the influence of a large excess of methanol during non-catalytic synthesis of biodiesel. The efficiency of use of a molar excess of methanol is reduced as it grows, and with a more than 10-fold molar excess of the amount of reacted methanol, is practically constant. The comparison of biodiesel production processes in the range 220–235 °C showed that a slight change in the process temperature more effectively affects the biodiesel yield than an increase in the molar excess of methanol. A mathematical model of the process of transesterification of rapeseed oil in reactors of various types (batch and tubular reactors) is developed. A satisfactory correlation between the experimental and calculated data was observed. The calculation showed that the rate constants of the reverse reactions at 230 °C were not significant.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S725-S726
Author(s):  
Andrew R Mack ◽  
Melissa D Barnes ◽  
Magdalena A Taracila ◽  
Maria F Mojica ◽  
Vijay Kumar ◽  
...  

Abstract Background Antimicrobial resistance is a major global health threat. Pseudomonas aeruginosa is a leading cause of nosocomial infections and a key opportunistic pathogen in cystic fibrosis. Multidrug resistant strains are classified as a “serious threat” by the CDC. Pseudomonas-derived cephalosporinase (PDC) is largely responsible for β-lactam antibiotic resistance in P. aeruginosa. Single amino acid substitutions in the essential Ω-loop region (e.g. Y221H by structural alignment-based numbering of class C β-lactamases) have been shown to enhance hydrolysis of ceftazidime (CAZ) and ceftolozane (TOL), limiting therapeutic options for P. aeruginosa. Methods We undertook detailed studies to explore the mechanisms by which Y221H enhances CAZ and TOL MICs. MIC measurements were performed per CLSI guidelines using MH Agar. Thermal stability was determined by circular dichroism. Enzyme kinetic properties were determined using spectrophotometric techniques. Molecular dynamics techniques were used to predict structural changes. Results E. coli expressing blaPDC-3-Y221H is less susceptible to CAZ (MIC 0.5 mg/L WT → 8 mg/L Y221H) and TOL (MIC 2 mg/L WT → 16 mg/L Y221H). Using steady-state kinetic analysis, Y221H was found to hydrolyze CAZ with a KM = 585 µM, a kcat = 3.4 sec-1, and kcat/KM = 0.0058 µM-1s-1. With cephalothin, a good PDC substrate, we observed KM = 26.6 µM, kcat = 70.1 s-1, and kcat/KM = 2.6 µM-1 s-1 for Y221H. Using Electrospray ionization mass spectrometry (ESI-MS), CAZ was detected covalently bound to WT, but not Y221H when incubated at 1000-fold molar excess. Avibactam (AVI) inhibited Y223H (Ki = 70 nM vs. 19 nM for WT). Y221H thermal stability decreased by 5°C (Tm = 47°C vs 52°C WT). AVI at 10-fold molar excess does not increase Tm in Y221H or WT. WT-MetaDynamics (WT MDS) predicts the opening of a hidden pocket by repositioning residue 221 (Figure 1).). Figure 1: (Left) We carried out enhanced sampling metadynamics simulations to generate free-energy landscapes as a function of the dihedral angles of residue 221. This identifies the differences in the dynamics of the tyrosyl side chains in the wild type Y221 and the imidazole ring of the H221 variant. (Right) The rotation of the side chain in H221 opens a cryptic pocket (green mesh), which is occluded in the wild type. The Ω-loop is colored red. Conclusion PDC-3 Y221H increases CAZ & TOL MICs and alters catalytic activity, primarily by a change in kcat. Our modelling analyses suggest altered conformational flexibility and structure-function relationships in the Ω-loop. These results help to advance our understanding of PDC and will inform development of novel antibiotics and inhibitors. Disclosures Robert A. Bonomo, MD, Entasis, Merck, Venatorx (Research Grant or Support)


Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 37 ◽  
Author(s):  
Urszula Dorosz ◽  
Natalia Barteczko ◽  
Piotr Latos ◽  
Karol Erfurt ◽  
Ewa Pankalla ◽  
...  

Alkyl lactates are produced from lactic acid via esterification, and are used in the production of plastics, paints, solvents and detergents. In the pursuit of an inexpensive, industry-suitable catalyst for this reaction, the application of protic ionic liquids based on nitrogen base and sulphuric acid is proposed. The ionic liquid was synthesised via a simple reaction of triethylamine and a threefold molar excess of sulphuric acid. Water was added to remove the heat of the reaction. Next, the reaction conditions for the model esterification of 2-ethylhexanol with lactic acid without additional solvent were optimised. Exceptionally mild conditions, i.e., a twofold molar excess of alcohol to lactic acid with the addition of an ionic liquid in a catalytic amount (15 mol%) at 60 °C, resulted in high yields of ethyl and 2-ethylhexyl lactates (96–97%). The driving force of this reaction is the production of a biphasic system with immiscible ester during the reaction. This phenomenon makes it possible to overcome the reaction equilibrium. Using an inexpensive ionic liquid, which could be recycled up to five times without diminution in conversion or selectivity, leads to both a greener and a more economically-viable process.


Sign in / Sign up

Export Citation Format

Share Document