hydrocarbon mixtures
Recently Published Documents


TOTAL DOCUMENTS

915
(FIVE YEARS 78)

H-INDEX

51
(FIVE YEARS 7)

2021 ◽  
pp. 118271
Author(s):  
Philippe J. Thomas ◽  
David C. Eickmeyer ◽  
Kristin M. Eccles ◽  
Linda E. Kimpe ◽  
Emiel Felzel ◽  
...  

Nafta-Gaz ◽  
2021 ◽  
Vol 77 (7) ◽  
pp. 463-470
Author(s):  
Sławomir Szuflita ◽  
◽  
Wojciech Krasodomski ◽  
Jerzy Kuśnierczyk ◽  
Mirosław Wojnicki ◽  
...  

According to the National Bank of Poland, by the end of 2019, oil imports to Poland amounted to 26.3 million tonnes of crude oil, where the main volume came from Russia. The need to ensure greater energy security enforces the diversification of crude oil supplies, thus the largest domestic refineries are increasing the share of supplies from different sources each year. This entails the need for continuous information on the profitability of processing new types of crude oil and potential problems resulting in increased cost. Quality control of the crude oil offered on the market helps minimize the risk of purchasing incompatible oil types by ensuring that the proposed shipment meets the relevant quality requirements. Of particular importance is the fact that such tests should be performed prior to the decision to purchase a particular crude oil and introduce it to the refinery’s installation. It often happens, however, that detailed tests are performed only after the purchase. It is important to note that testing the physicochemical properties and determining the yield of individual fractions alone is not sufficient. Precipitation of sediments in the logistic chain of crude oil is a significant problem both in pipeline installations, storage depots, and refinery installations, where crude oil containing dispersed sediments is processed. In the previous stage of work, an effective filtration method was developed to determine the compatibility of crude oils and their mixtures. Now, attention was focused on developing a new method that allowed for a faster compatibility measurement capability along with reusing samples for another measurement. The developed new method of pump compatibility testing was tested for two crude oils from different supply directions. The measurements were performed for crude oils and their mixtures at 150°C under 25 bar pressure. Compatibility of crude oils with the filtration method was used for comparison, where based on the mass of sediment separated on special filters, the allowable concentrations where hydrocarbon mixtures were compatible were determined.


2021 ◽  
Vol 43 (1) ◽  
pp. 13-19
Author(s):  
A.A. Dolinskiy ◽  
V.G. Gorobets ◽  
O.O. Pereiaslavtseva

The analysis of the methods and equipment in which the heating and melting of hydrocarbon mixtures in the pharmaceutical, food and oil refining industries is carried out has shown that reactors, baths, electric heaters, heating chambers, etc. are traditionally used for heating and melting hydrocarbon mixtures. Such methods are time consuming and energy consuming, large temperature gradients are observed, which leads to overheating of one part of the substance and underheating of another. In addition, the process of loading mixtures into boilers and their subsequent unloading is problematic and unsafe for contamination. Often containers with such substances are kept in unheated or poorly heated rooms (warehouses, workshops, etc.) and are too viscous to be unloaded from the container and transported to the next stages of production, which makes it difficult and slows down their melting. Most of the equipment is purchased abroad, for the purchase of which large funds are spent. The discovered existing problems give impetus to the development of new methods and equipment for the implementation of heating and melting processes. References 6, figures 6.


2021 ◽  
Author(s):  
Tawfiq J. Jaber

Thermodiffusion (the Soret effect) is important for the study of compositional variation in hydrocarbon reservoirs. The development of research history, theoretical modeling and applications to multicomponent hydrocarbon mixtures is included in this work. The Firoozabadi model appears to be an appropriate model for thermodiffusion estimation for hydrocarbon mixtures, and it is derived based on the equation of entropy generation rate and four postulates in non-equilibrium thermodynamics. Two equations of state, the Peng-Robinson Equation of State (PR-EoS) and the volume translated Peng Robinson Equation of State (vt-PR-EoS), have been used to estimate the thermodynamic properties of mixtures. In this work, different cases are presented: first, a new thermodiffusion cell designed to perform high pressure measurements in a porous medium has been validated at atmospheric pressure. Two systems were investigated, (1) 1,2,3,4-tetrahydronaphtalene (THN) and n-dodecane (nC12), and (2) isobutylbenzene (IBB) and n-dodecane at 50% of mass fraction. Experimental results revealed an excellent agreement with benchmark values and a good agreement with theoretical data. Second, the thermal expansion and concentration expansion coefficients and the viscosity of mixtures are necessary properties for the determination of the thermodiffusion coefficient. The densities of binaries of nC12, IBB and THN for pressures from 0.1 to 20 MPa and a temperature centred on 25⁰ were measured. By an derivative method, the thermal expansion and concentration expansion coefficients were determined. Viscosities were directly measured using a high pressure high temperature viscometer. Finally, the thermosolutal convections of two ternary mixtures, methane (C1), n-butane (nC4) and n-dodecane (nC12) at a pressure of 35.0 MPa and nC12, THN and IBB at atmospheric pressure, in a porous medium, were investigated over a wide range of permeability. The effect of permeability in the homogeneous and heterogeneous porous media on fluid transport was studied with consideration of thermodiffusion and molecular diffusion. In the analysis of the homogeneous porous medium, it was found that, for permeability below 300 mD, the thermodiffusion for both mixtures was dominant; and above this level, buoyancy convection became the dominant mechanism. Also, the viscosity was found to influence the evaluation of the molecular and thermodiffusion coefficients. In the case of heterogeneous porous medium, the impact of permeability ratio on the composition of the mixture components, velocity in the porous medium and on the separation ratio was investigated. It was found that the heterogeneity of porous medium has a significant influence on the composition of the mixture components.


2021 ◽  
Author(s):  
Tawfiq J. Jaber

Thermodiffusion (the Soret effect) is important for the study of compositional variation in hydrocarbon reservoirs. The development of research history, theoretical modeling and applications to multicomponent hydrocarbon mixtures is included in this work. The Firoozabadi model appears to be an appropriate model for thermodiffusion estimation for hydrocarbon mixtures, and it is derived based on the equation of entropy generation rate and four postulates in non-equilibrium thermodynamics. Two equations of state, the Peng-Robinson Equation of State (PR-EoS) and the volume translated Peng Robinson Equation of State (vt-PR-EoS), have been used to estimate the thermodynamic properties of mixtures. In this work, different cases are presented: first, a new thermodiffusion cell designed to perform high pressure measurements in a porous medium has been validated at atmospheric pressure. Two systems were investigated, (1) 1,2,3,4-tetrahydronaphtalene (THN) and n-dodecane (nC12), and (2) isobutylbenzene (IBB) and n-dodecane at 50% of mass fraction. Experimental results revealed an excellent agreement with benchmark values and a good agreement with theoretical data. Second, the thermal expansion and concentration expansion coefficients and the viscosity of mixtures are necessary properties for the determination of the thermodiffusion coefficient. The densities of binaries of nC12, IBB and THN for pressures from 0.1 to 20 MPa and a temperature centred on 25⁰ were measured. By an derivative method, the thermal expansion and concentration expansion coefficients were determined. Viscosities were directly measured using a high pressure high temperature viscometer. Finally, the thermosolutal convections of two ternary mixtures, methane (C1), n-butane (nC4) and n-dodecane (nC12) at a pressure of 35.0 MPa and nC12, THN and IBB at atmospheric pressure, in a porous medium, were investigated over a wide range of permeability. The effect of permeability in the homogeneous and heterogeneous porous media on fluid transport was studied with consideration of thermodiffusion and molecular diffusion. In the analysis of the homogeneous porous medium, it was found that, for permeability below 300 mD, the thermodiffusion for both mixtures was dominant; and above this level, buoyancy convection became the dominant mechanism. Also, the viscosity was found to influence the evaluation of the molecular and thermodiffusion coefficients. In the case of heterogeneous porous medium, the impact of permeability ratio on the composition of the mixture components, velocity in the porous medium and on the separation ratio was investigated. It was found that the heterogeneity of porous medium has a significant influence on the composition of the mixture components.


2021 ◽  
Author(s):  
Seyyed Arash Mousavi

In a multi-component liquid mixture, the process of disassociation of the components induced by thermal gradient is called thermal diffusion or Soret effect. This effect plays a crucial role in separation of the components in hydrocarbon mixtures of oil. Accordingly, the main goal of this study is to experimentally investigate the Soret effect in binary and ternary hydrocarbon mixtures. Optical interferometry technique with Mach-Zehnder scheme was used to conduct the experiments. The interferometry techniques are not intrusive and the separation of the components in the mixture is not affected by the measurement instrument. A Soret cell is defined as a cubic cavity where the sample mixture is placed in it and, the separation of the components takes place in the cell by heating it from the above. Soret cells are used in convectionless experiments and natural convections are undesirable. The Soret cell used in space experiments was re-designed and optimized for ground-based experiments to avoid the natural convections. Computational studies were made on the both cells to obtain the temperature and velocity fields. Then a set of thermal diffusion experiments conducted in order to compare the performance of the cells. The results shows that the induced convective motions in the second cell are significantly weaker than those in the previous cell which is desirable. In the next step, the effect of the inclination of the cell on the thermal diffusion was studied. First numerical analysis was made to find the velocity and temperature fields in different inclinations and then a set of experiments was performed and the concentration distribution of the components in a binary mixture in different inclinations of the cell was found. Finally, ground based experiments were performed to study the thermal diffusion in five ternary hydrocarbon mixtures. Optical interferometry with Mach-Zehnder scheme using two laser sources with different wavelengths was used. The Soret information of one of the mixtures is available in the literature and this mixture was studied here to validate the present experimental setup. The temperature and concentration of the mixtures were measured successfully in the Soret cell and a table of the measured Soret coefficient were provided.


Sign in / Sign up

Export Citation Format

Share Document