scholarly journals On conformally invariant extremal problems

2009 ◽  
Vol 3 (1) ◽  
pp. 97-119 ◽  
Author(s):  
Vesna Manojlovic

This paper deals with conformal invariants in the euclidean space Rn, n ? 2, and their interrelation. In particular, conformally invariant metrics and balls of the respective metric spaces are studied.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jeffrey Bergfalk ◽  
Chris Lambie-Hanson

Abstract In 1988, Sibe Mardešić and Andrei Prasolov isolated an inverse system $\textbf {A}$ with the property that the additivity of strong homology on any class of spaces which includes the closed subsets of Euclidean space would entail that $\lim ^n\textbf {A}$ (the nth derived limit of $\textbf {A}$ ) vanishes for every $n>0$ . Since that time, the question of whether it is consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for every $n>0$ has remained open. It remains possible as well that this condition in fact implies that strong homology is additive on the category of metric spaces. We show that assuming the existence of a weakly compact cardinal, it is indeed consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for all $n>0$ . We show this via a finite-support iteration of Hechler forcings which is of weakly compact length. More precisely, we show that in any forcing extension by this iteration, a condition equivalent to $\lim ^n\textbf {A}=0$ will hold for each $n>0$ . This condition is of interest in its own right; namely, it is the triviality of every coherent n-dimensional family of certain specified sorts of partial functions $\mathbb {N}^2\to \mathbb {Z}$ which are indexed in turn by n-tuples of functions $f:\mathbb {N}\to \mathbb {N}$ . The triviality and coherence in question here generalise the classical and well-studied case of $n=1$ .


1991 ◽  
Vol 56 (1) ◽  
pp. 187-210 ◽  
Author(s):  
J. Ferrand ◽  
G. J. Martin ◽  
M. Vuorinen

2013 ◽  
Vol 56 (3) ◽  
pp. 519-535 ◽  
Author(s):  
TIMOTHY FAVER ◽  
KATELYNN KOCHALSKI ◽  
MATHAV KISHORE MURUGAN ◽  
HEIDI VERHEGGEN ◽  
ELIZABETH WESSON ◽  
...  

AbstractMotivated by a classical theorem of Schoenberg, we prove that an n + 1 point finite metric space has strict 2-negative type if and only if it can be isometrically embedded in the Euclidean space $\mathbb{R}^{n}$ of dimension n but it cannot be isometrically embedded in any Euclidean space $\mathbb{R}^{r}$ of dimension r < n. We use this result as a technical tool to study ‘roundness’ properties of additive metrics with a particular focus on ultrametrics and leaf metrics. The following conditions are shown to be equivalent for a metric space (X,d): (1) X is ultrametric, (2) X has infinite roundness, (3) X has infinite generalized roundness, (4) X has strict p-negative type for all p ≥ 0 and (5) X admits no p-polygonal equality for any p ≥ 0. As all ultrametric spaces have strict 2-negative type by (4) we thus obtain a short new proof of Lemin's theorem: Every finite ultrametric space is isometrically embeddable into some Euclidean space as an affinely independent set. Motivated by a question of Lemin, Shkarin introduced the class $\mathcal{M}$ of all finite metric spaces that may be isometrically embedded into ℓ2 as an affinely independent set. The results of this paper show that Shkarin's class $\mathcal{M}$ consists of all finite metric spaces of strict 2-negative type. We also note that it is possible to construct an additive metric space whose generalized roundness is exactly ℘ for each ℘ ∈ [1, ∞].


2017 ◽  
Vol 124 (7) ◽  
pp. 621 ◽  
Author(s):  
John C. Bowers ◽  
Philip L. Bowers

2020 ◽  
Vol 17 (4) ◽  
pp. 574-593
Author(s):  
Serhii Skvortsov

The local behavior of mappings with the inverse Poletsky inequality between metric spaces is studied. The case where one of the spaces satisfies the condition of weak sphericalization, is similar to the Riemannian sphere (extended Euclidean space), and is locally linearly connected under a mapping is considered. It is proved that the equicontinuity of the corresponding families of mappings of two domains, one of which is a domain with a weakly flat boundary, and another one is a fixed domain with a compact closure, the corresponding weight in the main inequality being supposed to be integrable.


2007 ◽  
Vol 09 (03) ◽  
pp. 335-358 ◽  
Author(s):  
THOMAS BRANSON ◽  
A. ROD GOVER

It was shown by Chern and Simons that the Pontrjagin forms are conformally invariant. We show them to be the Pontrjagin forms of the conformally invariant tractor connection. The Q-curvature is intimately related to the Pfaffian. Working on even-dimensional manifolds, we show how the k-form operators Qk of [12], which generalize the Q-curvature, retain a key aspect of the Q-curvature's relation to the Pfaffian, by obstructing certain representations of natural operators on closed forms. In a closely related direction, we show that the Qk give rise to conformally invariant quadratic forms Θk on cohomology that interpolate, in a suitable sense, between the integrated metric pairing (at k = n/2) and the Pfaffian (at k = 0). Using a different construction, we show that the Qk operators yield a map from conformal structures to Lagrangian subspaces of the direct sum Hk ⊕ Hk (where Hk is the dual of the de Rham cohomology space Hk); in an appropriate sense this generalizes the period map. We couple the Qk operators with the Pontrjagin forms to construct new natural densities that have many properties in common with the original Q-curvature; in particular these integrate to global conformal invariants. We also work out a relevant example, and show that the proof of the invariance of the (nonlinear) action functional whose critical metrics have constant Q-curvature extends to the action functionals for these new Q-like objects. Finally we set up eigenvalue problems that generalize to Qk-operators the Q-curvature prescription problem.


Sign in / Sign up

Export Citation Format

Share Document