scholarly journals Development and validation of stability-indicating RP-HPLC method for determination of Olmesartan medoxomile in pharmaceutical dosage form and identification, characterization of alkaline degradation impurity of Olmesartan medoxomile drug substance as well as drug product

2012 ◽  
Vol 18 (4-1) ◽  
pp. 595-604 ◽  
Author(s):  
P.S. Jain ◽  
A.J. Chaudhari ◽  
S.J. Surana

Olmesartan Medoxomil (OLME) belongs to a group of angiotensin II receptor blockers used as an antihypertensive agent and is currently being used for prevention of Hypertension. This paper describes the Validation and development of stability indicating RP-HPLC method for the determination of OLME in the presence of its degradation products generated from forced degradation study and characterization of degradation product (impurity). The assay involved gradient elution of OLME on An LC GC BDS C18 column (250 ? 4.5mm, 5-?m particle size) was employed for loading the sample. The mobile phase A consists of 7 ml Triethylamine in 1000 ml water (pH adjusted to 3.0 with orthophosphoric acid) and B contains acetonitrile. Quantification was achieved with photodiode array detection at 257 nm. The chromatographic separation was obtained with a retention time of 6.72 min, and the method was linear in the range 50-150 ?g/ml. The method was validated according to the ICH guidelines with respect to linearity, precision, accuracy, limit of detection (LOD), limit of quantification (LOQ), specificity and robustness. Impurity found in stressed and stability studies of Olmesartan Medoxomil in both drug substance and drug product are described. This degradation product is identified as 1-(biphenyl-4-ylmethyl)-1H-imidazole-5-carboxylic acid. An Alkaline degradation pathway of Olmesartan medoxomil, for the formation of this degradation product, has been proposed and degradation product was characterized.

Author(s):  
Murlidhar V. Zope ◽  
Rahul M. Patel ◽  
Ashwinikumari Patel ◽  
Samir G. Patel

Objective: The objective of the current study was to develop and validate a simple, robust, precise and accurate RP-HPLC (reverse phase-high performance liquid chromatography) method for the quantitative determination of potential degradation products of Difluprednate (DIFL) in the ophthalmic emulsion.Methods: Chromatographic separation was achieved on the YMC pack ODS-AQ (150× 4.6) mm, 3μm column with a mobile phase containing a gradient mixture of mobile phase A (0.02M Ammonium formate buffer pH 4.5 adjusted with formic acid) and Acetonitrile as mobile phase B, at flow rate of 1.5 ml/min and with UV detection at 240 nm.Results: The peak retention time of DIFL was found at about 17.2 min, the RRT of degradation product-1 (DP-1), degradation product-2 (DP-2), and degradation product-3 (DP-3), were found to be about 0.49, 0.65 and 0.79 respectively (calculated with respect to Difluprednate). Stress testing was performed in accordance with an ICH (international council for harmonisation) guideline Q1A (R2) [1]. The method was validated as per ICH guideline Q2 (R1)[2]. The calibration curve was found to be linear in the concentration range of 0.1 to 0.75 µg/ml for Difluprednate, DP-1, DP-2 and DP-3. The LOD (Limit of detection) was found to be 0.1µg/ml and LOQ (Limit of quantification) of 0.15µg/ml for Difluprednate, DP-1, DP-2 and DP-3 respectively. The recovery from LOQ to 150% was within 90-110%. The forced degradation data confirms the stability indicating the nature of the method.Conclusion: A simple, robust, precise and accurate RP-HPLC method for the quantitative determination of potential degradation products of Difluprednate in the ophthalmic emulsion was developed and validated. 


Sign in / Sign up

Export Citation Format

Share Document