salicylic acid
Recently Published Documents


TOTAL DOCUMENTS

8633
(FIVE YEARS 2082)

H-INDEX

155
(FIVE YEARS 22)

2022 ◽  
Vol 146 ◽  
pp. 111-117
Author(s):  
Mojde Sedaghat ◽  
Saeid Hazrati ◽  
Mojtaba Omrani

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 61
Author(s):  
Zujin Yang ◽  
Youliang Guan ◽  
Hongbing Ji

Oxidation is an important cause of fruit spoilage, and therefore improving the antioxidant capacity of fresh fruits is beneficial to their preservation. Herein, fresh-cut bananas were used as a type of fresh fruit and soaked in 75% hydroalcoholic gels containing salicylic acid (SA) or SA/β-CD inclusion complex (SA/β-CD). After treatment, they were placed in an atmosphere at 85% relative humidity at 20 °C for 12 days. A significant reduction in spoilage in bananas treated with the hydroalcoholic gels in the presence of SA/β-CD was observed, compared with those treated with gels in the presence or absence of SA. The free-radical-scavenging performances of SA and its complex were investigated using the DPPH (1,1-diphenyl-2-picryl-hydrazil) method. Based on the results, the significant increase in antioxidant activity was attributed to the fact that the inclusion complex could break the intramolecular hydrogen bonding of SA, thus efficiently eliminating ROS in the fruits. The formation of the inclusion complex was confirmed by experiments and theoretical calculations. Our findings indicate that treatment with SA/β-CD can provide an efficient method of maintaining postharvest quality and extending the shelf life of bananas.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 79
Author(s):  
Vahideh Biareh ◽  
Farid Shekari ◽  
Saeed Sayfzadeh ◽  
Hamidreza Zakerin ◽  
Esmaeil Hadidi ◽  
...  

Limited water stress is one of the most important environmental stresses that affect the growth, quantity and quality of agronomic crops. This study was undertaken to investigate the effect of foliar applied salicylic acid (SA) on physiological responses, antioxidant enzymes and qualitative traits of Cucurbita pepo L. Plants exposed to water-stressed conditions in two years of field studies. Irrigation regimes at three soil matric potential levels (−0.3, −1.2 and −1.8 MPa) and SA at four levels (0.0, 0.5, 1.0 and 1.5 mg/L) were considered as main plot and sub-plots, respectively. The soil matric potential values (MPa) was measured just before irrigation. Results showed that under water stressed conditions alone, the amounts of malondialdehyde (MDA), hydrogen peroxide (H2O2) and ion leakage were higher compared with control treatment. However, spraying of SA under both water stress and non-stress conditions reduced the values of the above parameters. Water stress increased CAT, APX and GR enzymes activity. However foliar application of SA led to the decrease of CAT, APX and GR under all soil matric potential levels. The amount of carbohydrates and fatty acids increased with the intensity of water stress and SA modulated this response. By increasing SA concentration both in optimum and stress conditions, saturated fatty acids content decreased. According to our data, the SA application is an effective approach to improve pumpkin growth under water stress conditions.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 151
Author(s):  
Marcelo Pedrosa Gomes ◽  
Rafael Shinji Akiyama Kitamura ◽  
Raizza Zorman Marques ◽  
Marcello Locatelli Barbato ◽  
Marcel Zámocký

We investigated the individual and combined contributions of two distinct heme proteins namely, ascorbate peroxidase (APX) and catalase (CAT) on the tolerance of Lemna minor plants to antibiotics. For our investigation, we used specific inhibitors of these two H2O2-scavenging enzymes (p-aminophenol, 3-amino,1,2,4-triazole, and salicylic acid). APX activity was central for the tolerance of this aquatic plant to amoxicillin (AMX), whereas CAT activity was important for avoiding oxidative damage when exposed to ciprofloxacin (CIP). Both monitored enzymes had important roles in the tolerance of Lemna minor to erythromycin (ERY). The use of molecular kinetic approaches to detect and increase APX and/or CAT scavenging activities could enhance tolerance, and, therefore, improve the use of L. minor plants to reclaim antibiotics from water bodies.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 174
Author(s):  
Maria-Cristina Anicescu ◽  
Cristina-Elena Dinu-Pîrvu ◽  
Marina-Theodora Talianu ◽  
Mihaela Violeta Ghica ◽  
Valentina Anuța ◽  
...  

The present study brings to attention a method to develop salicylic acid-based oil in water (O/W) microemulsions using a tensioactive system based on Tween 80, lecithin, and propylene glycol (PG), enriched with a vegetable oat oil phase and hyaluronic acid. The systems were physically characterized and the Quality by design approach was applied to optimize the attributes of microemulsions using Box–Behnken modeling, combined with response surface methodology. For this purpose, a 33 fractional factorial design was selected. The effect of independent variables namely X1: Tween 80/PG (%), X2: Lecithin (%), X3: Oil phase (%) was analyzed considering their impact upon the internal structure and evaluated parameters chosen as dependent factors: viscosity, mean droplet size, and work of adhesion. A high viscosity, a low droplet size, an adequate wettability—with a reduced mechanical work—and clarity were considered as desirable for the optimal systems. It was found that the optimal microemulsion which complied with the established conditions was based on: Tween 80/PG 40%, lecithin 0.3%, oat oil 2%, salicylic acid 0.5%, hyaluronic acid 1%, and water 56.2%. The response surface methodology was considered an appropriate tool to explain the impact of formulation factors on the physical properties of microemulsions, offering a complex pattern in the assessment of stability and quality attributes for the optimized formulation.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 555
Author(s):  
Monica Miranda Mugica ◽  
Kay Louise McGuinness ◽  
Nathan Scott Lawrence

This work summarizes the electrochemical response of a salicylic acid-based carbon electrode for use as a novel solid-state reference electrode in a redox-based pH sensor. This novel reference produces a pH insensitive response over a range of pH 3–10 in solutions with low buffer concentrations, different compositions, conductivities, and ionic strengths is produced. The pH of the local environment is shown to be determined by the chemistry and the electrochemical response of the redox active species on the surface of the electrode; the local pH can be controlled by the electropolymerized salicylic acid moieties due to the acid concentration on the surface, avoiding any perturbation in environmental pH and leading to a stable novel reference system. Sensitivities of −7.1 mV/pH unit, −2.4 mV/pH unit, −0.2 mV/pH unit, and 2.5 mV/pH units were obtained for different food medias, hydroponic solution, seawater, and cell-culture media, respectively, confirming its ability to control the local pH of the electrode. This reference system is paired with a new pH sensing element based on electropolymerized flavanone to provide a calibration free, pH sensitive sensor to effectively and accurately measure the pH of various media with high viscosity, low conductivity, low/high buffer concentration or cell-culture environment, presenting a maximum error of +/−0.03 pH units.


Sign in / Sign up

Export Citation Format

Share Document