Development of Validated Stability-indicating RP-HPLC Method for Determination of Novel Directly Acting Antiviral agent and Characterization of its Degradants by LC–ESI–MS

2020 ◽  
Vol 54 (4) ◽  
pp. 1159-1168
Author(s):  
Babita Agarwal ◽  
Santosh Gandhi
2012 ◽  
Vol 18 (4-1) ◽  
pp. 595-604 ◽  
Author(s):  
P.S. Jain ◽  
A.J. Chaudhari ◽  
S.J. Surana

Olmesartan Medoxomil (OLME) belongs to a group of angiotensin II receptor blockers used as an antihypertensive agent and is currently being used for prevention of Hypertension. This paper describes the Validation and development of stability indicating RP-HPLC method for the determination of OLME in the presence of its degradation products generated from forced degradation study and characterization of degradation product (impurity). The assay involved gradient elution of OLME on An LC GC BDS C18 column (250 ? 4.5mm, 5-?m particle size) was employed for loading the sample. The mobile phase A consists of 7 ml Triethylamine in 1000 ml water (pH adjusted to 3.0 with orthophosphoric acid) and B contains acetonitrile. Quantification was achieved with photodiode array detection at 257 nm. The chromatographic separation was obtained with a retention time of 6.72 min, and the method was linear in the range 50-150 ?g/ml. The method was validated according to the ICH guidelines with respect to linearity, precision, accuracy, limit of detection (LOD), limit of quantification (LOQ), specificity and robustness. Impurity found in stressed and stability studies of Olmesartan Medoxomil in both drug substance and drug product are described. This degradation product is identified as 1-(biphenyl-4-ylmethyl)-1H-imidazole-5-carboxylic acid. An Alkaline degradation pathway of Olmesartan medoxomil, for the formation of this degradation product, has been proposed and degradation product was characterized.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
J. Saroja ◽  
Anantha Lakshmi P.V. ◽  
Y. Rammohan ◽  
D. Divya Reddy

Abstract Background We describe a “stability-indicating liquid chromatography” technique for the estimation of dimethicone (DEC) and dicyclomine hydrochloride (DEH) in the established tablet formulations. Individual quantification of DEH and DEC was reported. But simultaneous quantification of DEH and DEC was lacking. DEH and DEC were analysed on an “XTerra C18 column (250 mm × 4.6 mm, 5 μm)” with the mobile phase solvent run isocratically with 0.1M K2HPO4-acetonitrile (55:45, v/v) on a flow speed of 1.0 mL/min. Results The chromatographic run period for the DEC and DEH assay was 6.0 min with retention times of 2.134 and 2.865 min, respectively. The method was validated for accuracy (99.453 to 100.417% and 99.703 to 100.303% recovery values for DEH and DEC, respectively), precision (RSV value 0.135% for DEC and 0.171% for DEH), linearity (5–15 μg/mL for DEH and 20–60 μg/mL for DEC), selectivity (no hinderance from excipients) and specificity (no hinderance from degradants) recovery. Conclusion The developed stability-indicating liquid chromatography process was well applied to established tablet formulations.


2020 ◽  
Vol 11 (1) ◽  
pp. 781-789
Author(s):  
Sriram Valavala ◽  
Nareshvarma Seelam ◽  
Subbaiah Tondepu ◽  
Suresh Kandagatla

The present study aims to develop a simple, accurate and specific stability-indicating RP-HPLC technique for the analysis of metoclopramide in the presence of its stress degradation products and characterization of degradation compounds by LC-MS/MS analysis. As per ICH Q1A-R2 guidelines, the drug was exposed to acid hydrolytic stress condition. Three degradation products were formed for MCP in acid hydrolysis. The liquid chromatography was processed on a Luna C18-(2) 100A,250×4.6mm 5micron column using an isocratic mobile phase consisting of 0.1% formic acid in water-acetonitrile (20:80, v/v) by adjusting the mobile phase at 1 ml/min flow rate with wavelength detection at 273 nm. The developed procedure was applied to LC-MS/MS (liquid chromatography-tandem mass spectrometry) for the characterization of all the degradant components. Total new three degradation compounds were recognized and identified by LC-MS/MS. The developed RP-HPLC technique was validated as per the ICH Q2-R1 guidelines. Limit of detection and limit of quantification values of MCP were evaluated from the linearity graph and were found to be 5.23 µg/ml and 17.44 µg/ml. Accuracy study was established at 80.0, 100.0 and 120.0 µg/ml concentration levels and the findings were found in the range of 98.4% - 101.8%. The linearity of the technique was assessed over the drug concentration range of 50.0 µg/ml to 250.0 µg/ml and the regression equation, slope and correlation coefficient values were found to be y = 10618x + 1623.2, 10618 and 0.9996 respectively. The developed technique was uninterruptedly applied for the quantification of metoclopramide inactive pharmaceuticals.


2010 ◽  
Vol 7 (1) ◽  
pp. 246-252 ◽  
Author(s):  
S. K. Patro ◽  
S. K. Kanungo ◽  
V. J. Patro ◽  
N. S. K. Choudhury

A simple, rapid and accurate and stability indicating RP-HPLC method was developed for the determination of valsartan in pure and tablet forms. The method showed a linear response for concentrations in the range of 50-175 µg/mL using 0.01 M NH4H2PO4(pH 3.5) buffer: methanol [50:50] as the mobile phase with detection at 210 nm and a flow rate of 1 mL/min and retention time 11.041 min. The method was statistically validated for accuracy, precision, linearity, ruggedness, robustness, forced degradation, solution stability and selectivity. Quantitative and recovery studies of the dosage form were also carried out and analyzed; the % RSD from recovery studies was found to be less than 1. Due to simplicity, rapidity and accuracy of the method, we believe that the method will be useful for routine quality control analysis.


Sign in / Sign up

Export Citation Format

Share Document