scholarly journals Improving categorical data clustering algorithm by weighting uncommon attribute value matches

2006 ◽  
Vol 3 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Zengyou He ◽  
Xiaofei Xu ◽  
Shenchun Deng

This paper presents an improved Squeezer algorithm for categorical data clustering by giving greater weight to uncommon attribute value matches in similarity computations. Experimental results on real life datasets show that, the modified algorithm is superior to the original Squeezer algorithm and other clustering algorithm with respect to clustering accuracy.

Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 580
Author(s):  
Albert No

We established a universality of logarithmic loss over a finite alphabet as a distortion criterion in fixed-length lossy compression. For any fixed-length lossy-compression problem under an arbitrary distortion criterion, we show that there is an equivalent lossy-compression problem under logarithmic loss. The equivalence is in the strong sense that we show that finding good schemes in corresponding lossy compression under logarithmic loss is essentially equivalent to finding good schemes in the original problem. This equivalence relation also provides an algebraic structure in the reconstruction alphabet, which allows us to use known techniques in the clustering literature. Furthermore, our result naturally suggests a new clustering algorithm in the categorical data-clustering problem.


In data mining ample techniques use distance based measures for data clustering. Improving clustering performance is the fundamental goal in cluster domain related tasks. Many techniques are available for clustering numerical data as well as categorical data. Clustering is an unsupervised learning technique and objects are grouped or clustered based on similarity among the objects. A new cluster similarity finding measure, which is cosine like cluster similarity measure (CLCSM), is proposed in this paper. The proposed cluster similarity measure is used for data classification. Extensive experiments are conducted by taking UCI machine learning datasets. The experimental results have shown that the proposed cosinelike cluster similarity measure is superior to many of the existing cluster similarity measures for data classification.


2021 ◽  
Vol 8 (10) ◽  
pp. 43-50
Author(s):  
Truong et al. ◽  

Clustering is a fundamental technique in data mining and machine learning. Recently, many researchers are interested in the problem of clustering categorical data and several new approaches have been proposed. One of the successful and pioneering clustering algorithms is the Minimum-Minimum Roughness algorithm (MMR) which is a top-down hierarchical clustering algorithm and can handle the uncertainty in clustering categorical data. However, MMR tends to choose the category with less value leaf node with more objects, leading to undesirable clustering results. To overcome such shortcomings, this paper proposes an improved version of the MMR algorithm for clustering categorical data, called IMMR (Improved Minimum-Minimum Roughness). Experimental results on actual data sets taken from UCI show that the IMMR algorithm outperforms MMR in clustering categorical data.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ziqi Jia ◽  
Ling Song

The k-prototypes algorithm is a hybrid clustering algorithm that can process Categorical Data and Numerical Data. In this study, the method of initial Cluster Center selection was improved and a new Hybrid Dissimilarity Coefficient was proposed. Based on the proposed Hybrid Dissimilarity Coefficient, a weighted k-prototype clustering algorithm based on the hybrid dissimilarity coefficient was proposed (WKPCA). The proposed WKPCA algorithm not only improves the selection of initial Cluster Centers, but also puts a new method to calculate the dissimilarity between data objects and Cluster Centers. The real dataset of UCI was used to test the WKPCA algorithm. Experimental results show that WKPCA algorithm is more efficient and robust than other k-prototypes algorithms.


Sign in / Sign up

Export Citation Format

Share Document