scholarly journals A note on the perturbation bounds of W-weighted Drazin inverse of linear operator in Banach space

Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 505-511 ◽  
Author(s):  
Xue-Zhong Wang ◽  
Hai-Feng Ma ◽  
Marija Cvetkovic

We investigate the perturbation bound of the W-weighted Drazin inverse for bounded linear operators between Banach spaces and present two explicit expressions for the W-weighted Drazin inverse of bounded linear operators in Banach space, which extend the results in Chin. Anna. Math., 21C:1 (2000) 39-44 by Wei.

2019 ◽  
Vol 35 (2) ◽  
pp. 171-184 ◽  
Author(s):  
DIJANA MOSIC ◽  

We define an extension of weighted G-Drazin inverses of rectangular matrices to operators between two Banach spaces. Some properties of weighted G-Drazin inverses are generalized and some new ones are proved. Using weighted G-Drazin inverses, we introduce and characterize a new weighted pre-order on the set of all bounded linear operators between two Banach spaces. As an application, we present and study the G-Drazin inverse and the G-Drazin partial order for operators on Banach space.


2007 ◽  
Vol 82 (2) ◽  
pp. 163-181 ◽  
Author(s):  
A. Dajić ◽  
J. J. Koliha

AbstractThe paper introduces and studies the weighted g-Drazin inverse for bounded linear operators between Banach spaces, extending the concept of the weighted Drazin inverse of Rakočević and Wei (Linear Algebra Appl. 350 (2002), 25–39) and of Cline and Greville (Linear Algebra Appl. 29 (1980), 53–62). We use the Mbekhta decomposition to study the structure of an operator possessing the weighted g-Drazin inverse, give an operator matrix representation for the inverse, and study its continuity. An open problem of Rakočević and Wei is solved.


2006 ◽  
Vol 81 (3) ◽  
pp. 405-423 ◽  
Author(s):  
A. Dajić ◽  
J. J. Koliha

AbstractThe paper introduces and studies the weighted g-Drazin inverse for bounded linear operators between Banach spaces, extending the concept of the weighted Drazin inverse of Rakočević and Wei (Linear Algebra Appl. 350 (2002), 25–39) and of Cline and Greville (Linear Algebra Appl. 29(1980), 53–62). We use the Mbekhta decomposition to study the structure of an operator possessing the weighted g-Drazin inverse, give an operator matrix representation for the inverse, and study its continuity. An open problem of Rakočević and Wei is solved.


2016 ◽  
Vol 160 (3) ◽  
pp. 413-421 ◽  
Author(s):  
TOMASZ KANIA ◽  
NIELS JAKOB LAUSTSEN

AbstractA recent result of Leung (Proceedings of the American Mathematical Society, 2015) states that the Banach algebra ℬ(X) of bounded, linear operators on the Banach space X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓ1 contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓp and X = (⊕n∈$\mathbb{N}$ ℓ1n)ℓp whenever p ∈ (1, ∞).


2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


1969 ◽  
Vol 16 (3) ◽  
pp. 227-232 ◽  
Author(s):  
J. C. Alexander

In (4) Vala proves a generalization of Schauder's theorem (3) on the compactness of the adjoint of a compact linear operator. The particular case of Vala's result that we shall be concerned with is as follows. Let t1 and t2 be non-zero bounded linear operators on the Banach spaces Y and X respectively, and denote by 1T2 the operator on B(X, Y) defined by


1969 ◽  
Vol 21 ◽  
pp. 592-594 ◽  
Author(s):  
A. F. Ruston

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in if and only if it has a rational resolvent (8, p. 314).Some ten years ago (in May, 1957), I discovered a property of the class g which may be of interest in connection with Caradus' work, and is the subject of the present note.2. THEOREM. Let X be a complex Banach space. If T belongs to the class, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that S = p(T).


2019 ◽  
Vol 12 (05) ◽  
pp. 1950084
Author(s):  
Anuradha Gupta ◽  
Ankit Kumar

Let [Formula: see text] and [Formula: see text] be two bounded linear operators on a Banach space [Formula: see text] and [Formula: see text] be a positive integer such that [Formula: see text] and [Formula: see text], then [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] have some common spectral properties. Drazin invertibility and polaroidness of these operators are also discussed. Cline’s formula for Drazin inverse in a ring with identity is also studied under the assumption that [Formula: see text] for some positive integer [Formula: see text].


2013 ◽  
Vol 846-847 ◽  
pp. 1286-1290
Author(s):  
Shi Qiang Wang ◽  
Li Guo ◽  
Lei Zhang

In this paper, we investigate additive properties for the generalized Drazin inverse of bounded linear operators on Banach space . We give explicit representation of the generalized Drazin inverse in terms of under some conditions.


Author(s):  
FENG WEI ◽  
YUHAO ZHANG

Abstract Let $\mathcal {X}$ be a Banach space over the complex field $\mathbb {C}$ and $\mathcal {B(X)}$ be the algebra of all bounded linear operators on $\mathcal {X}$ . Let $\mathcal {N}$ be a nontrivial nest on $\mathcal {X}$ , $\text {Alg}\mathcal {N}$ be the nest algebra associated with $\mathcal {N}$ , and $L\colon \text {Alg}\mathcal {N}\longrightarrow \mathcal {B(X)}$ be a linear mapping. Suppose that $p_n(x_1,x_2,\ldots ,x_n)$ is an $(n-1)\,$ th commutator defined by n indeterminates $x_1, x_2, \ldots , x_n$ . It is shown that L satisfies the rule $$ \begin{align*}L(p_n(A_1, A_2, \ldots, A_n))=\sum_{k=1}^{n}p_n(A_1, \ldots, A_{k-1}, L(A_k), A_{k+1}, \ldots, A_n) \end{align*} $$ for all $A_1, A_2, \ldots , A_n\in \text {Alg}\mathcal {N}$ if and only if there exist a linear derivation $D\colon \text {Alg}\mathcal {N}\longrightarrow \mathcal {B(X)}$ and a linear mapping $H\colon \text {Alg}\mathcal {N}\longrightarrow \mathbb {C}I$ vanishing on each $(n-1)\,$ th commutator $p_n(A_1,A_2,\ldots , A_n)$ for all $A_1, A_2, \ldots , A_n\in \text {Alg}\mathcal {N}$ such that $L(A)=D(A)+H(A)$ for all $A\in \text {Alg}\mathcal {N}$ . We also propose some related topics for future research.


Sign in / Sign up

Export Citation Format

Share Document