scholarly journals Additive perturbations and multiplicative perturbations for the core inverse of bounded linear operator in Hilbert space

Filomat ◽  
2018 ◽  
Vol 32 (17) ◽  
pp. 6131-6144
Author(s):  
Fapeng Du ◽  
Zuhair Nashed

In this paper, we present some characteristics and expressions of the core inverse A# of bounded linear operator A in Hilbert spaces. Additive perturbations of core inverse are investigated under the condition R( ?)?N(A#) = {0} and an upper bound of ||?#-A#|| is obtained. We also discuss the multiplicative perturbations. The expressions of core inverse of perturbed operator T = EAF and the upper bounds of ||T#-A#|| are obtained too.

2006 ◽  
Vol 73 (2) ◽  
pp. 255-262 ◽  
Author(s):  
S. S. Dragomir

Some elementary inequalities providing upper bounds for the difference of the norm and the numerical radius of a bounded linear operator on Hilbert spaces under appropriate conditions are given.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Tao Yan ◽  
Javariya Hyder ◽  
Muhammad Saeed Akram ◽  
Ghulam Farid ◽  
Kamsing Nonlaopon

In this paper, we establish some upper bounds of the numerical radius of a bounded linear operator S defined on a complex Hilbert space with polar decomposition S = U ∣ S ∣ , involving generalized Aluthge transform. These bounds generalize some bounds of the numerical radius existing in the literature. Moreover, we consider particular cases of generalized Aluthge transform and give some examples where some upper bounds of numerical radius are computed and analyzed for certain operators.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Zhong-Qi Xiang

We obtain a new inequality for frames in Hilbert spaces associated with a scalar and a bounded linear operator induced by two Bessel sequences. It turns out that the corresponding results due to Balan et al. and Găvruţa can be deduced from our result.


2003 ◽  
Vol 4 (2) ◽  
pp. 301
Author(s):  
A. Bourhim

<p>In this talk, to be given at a conference at Seconda Università degli Studi di Napoli in September 2001, we shall describe the set of analytic bounded point evaluations for an arbitrary cyclic bounded linear operator T on a Hilbert space H and shall answer some questions due to L. R. Williams.</p>


2014 ◽  
Vol 11 (3) ◽  
pp. 1267-1273
Author(s):  
Baghdad Science Journal

In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.


1989 ◽  
Vol 32 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Domingo A. Herrero

AbstractA bounded linear operator A on a complex, separable, infinite dimensional Hilbert space is called finite if for each . It is shown that the class of all finite operators is a closed nowhere dense subset of


1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


Author(s):  
J. Sedghi Moghaddam ◽  
A. Najati ◽  
F. Ghobadzadeh

The concept of [Formula: see text]-frames was recently introduced by Găvruta7 in Hilbert spaces to study atomic systems with respect to a bounded linear operator. Let [Formula: see text] be a unital [Formula: see text]-algebra, [Formula: see text] be finitely or countably generated Hilbert [Formula: see text]-modules, and [Formula: see text] be adjointable operators from [Formula: see text] to [Formula: see text]. In this paper, we study a class of [Formula: see text]-bounded operators and [Formula: see text]-operator frames for [Formula: see text]. We also prove that the pseudo-inverse of [Formula: see text] exists if and only if [Formula: see text] has closed range. We extend some known results about the pseudo-inverses acting on Hilbert spaces in the context of Hilbert [Formula: see text]-modules. Further, we also present some perturbation results for [Formula: see text]-operator frames in [Formula: see text].


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Karim Hedayatian ◽  
Lotfollah Karimi

A bounded linear operatorTon a Hilbert spaceℋ, satisfying‖T2h‖2+‖h‖2≥2‖Th‖2for everyh∈ℋ, is called a convex operator. In this paper, we give necessary and sufficient conditions under which a convex composition operator on a large class of weighted Hardy spaces is an isometry. Also, we discuss convexity of multiplication operators.


2008 ◽  
Vol 39 (4) ◽  
pp. 347-352 ◽  
Author(s):  
Gyan Prakash Tripathi ◽  
Nand Lal

A bounded linear operator $ T $ on a Hilbert space $ H $ is called antinormal if the distance of $ T $ from the set of all normal operators is equal to norm of $ T $. In this paper, we give a complete characterization of antinormal composition operators on $ \ell^2 $, where $ \ell^2 $ is the Hilbert space of all square summable sequences of complex numbers under standard inner product on it.


Sign in / Sign up

Export Citation Format

Share Document