(F,G)-operator frames for ℒ(ℋ,𝒦)

Author(s):  
J. Sedghi Moghaddam ◽  
A. Najati ◽  
F. Ghobadzadeh

The concept of [Formula: see text]-frames was recently introduced by Găvruta7 in Hilbert spaces to study atomic systems with respect to a bounded linear operator. Let [Formula: see text] be a unital [Formula: see text]-algebra, [Formula: see text] be finitely or countably generated Hilbert [Formula: see text]-modules, and [Formula: see text] be adjointable operators from [Formula: see text] to [Formula: see text]. In this paper, we study a class of [Formula: see text]-bounded operators and [Formula: see text]-operator frames for [Formula: see text]. We also prove that the pseudo-inverse of [Formula: see text] exists if and only if [Formula: see text] has closed range. We extend some known results about the pseudo-inverses acting on Hilbert spaces in the context of Hilbert [Formula: see text]-modules. Further, we also present some perturbation results for [Formula: see text]-operator frames in [Formula: see text].

2014 ◽  
Vol 46 (1) ◽  
pp. 85-90 ◽  
Author(s):  
P.Sam Johnson ◽  
G. Ramu

$K$-frames, more general than the ordinary frames, have been introduced by Laura G{\u{a}}vru{\c{t}}a in Hilbert spaces to study atomic systems with respect to a bounded linear operator. Using the frame operator, we find a class of bounded linear operators in which a given Bessel sequence is an atomic system for every member in the class.


Filomat ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 1927-1931
Author(s):  
Saroj Malik ◽  
Néstor Thome

For two given Hilbert spaces H and K and a given bounded linear operator A ? L(H,K) having closed range, it is well known that the Moore-Penrose inverse of A is a reflexive g-inverse G ? L(K,H) of A which is both minimum norm and least squares. In this paper, weaker equivalent conditions for an operator G to be the Moore-Penrose inverse of A are investigated in terms of normal, EP, bi-normal, bi-EP, l-quasi-normal and r-quasi-normal and l-quasi-EP and r-quasi-EP operators.


2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Zhong-Qi Xiang

We obtain a new inequality for frames in Hilbert spaces associated with a scalar and a bounded linear operator induced by two Bessel sequences. It turns out that the corresponding results due to Balan et al. and Găvruţa can be deduced from our result.


BIBECHANA ◽  
2014 ◽  
Vol 11 ◽  
pp. 169-174
Author(s):  
Mahendra Shahi

A bounded linear operator which has a finite index and which is defined on a Banach space is often referred to in the literature as a Fredholm operator. Fredholm operators are important for a variety of reasons, one being the role that their index plays in global analysis. The aim of this paper is to prove the spectral theorem for compact operators in refined form and to describe some properties of the essential spectrum of general bounded operators by the use of the theorem of Fredholm operators. For this, we have analysed the Fredholm operator which is defined in a Banach space for some special characterisations. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10399 BIBECHANA 11(1) (2014) 169-174


Filomat ◽  
2012 ◽  
Vol 26 (6) ◽  
pp. 1283-1290
Author(s):  
Shirin Hejazian ◽  
Madjid Mirzavaziri ◽  
Omid Zabeti

In this paper, we consider three classes of bounded linear operators on a topological vector space with respect to three different topologies which are introduced by Troitsky. We obtain some properties for the spectral radii of a linear operator on a topological vector space. We find some sufficient conditions for the completeness of these classes of operators. Finally, as a special application, we deduce some sufficient conditions for invertibility of a bounded linear operator.


1979 ◽  
Vol 20 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Che-Kao Fong

A (bounded, linear) operator H on a Banach space is said to be hermitian if ∥exp(itH)∥ = 1 for all real t. An operator N on is said to be normal if N = H + iK, where H and K are commuting hermitian operators. These definitions generalize those familiar concepts of operators on Hilbert spaces. Also, the normal derivations defined in [1] are normal operators. For more details about hermitian operators and normal operators on general Banach spaces, see [4]. The main result concerning normal operators in the present paper is the following theorem.


2007 ◽  
Vol 2007 ◽  
pp. 1-15
Author(s):  
Pachara Chaisuriya ◽  
Sing-Cheong Ong ◽  
Sheng-Wang Wang

Let𝒜be aC*-algebra with identity1, and lets(𝒜)denote the set of all states on𝒜. Forp,q,r∈[1,∞), denote by𝒮r(𝒜)the set of all infinite matricesA=[ajk]j,k=1∞over𝒜such that the matrix(ϕ[A[2]])[r]:=[(ϕ(ajk*ajk))r]j,k=1∞defines a bounded linear operator fromℓptoℓqfor allϕ∈s(𝒜). Then𝒮r(𝒜)is a Banach algebra with the Schur product operation and norm‖A‖=sup{‖(ϕ[A[2]])r‖1/(2r):ϕ∈s(𝒜)}. Analogs of Schatten's theorems on dualities among the compact operators, the trace-class operators, and all the bounded operators on a Hilbert space are proved.


2006 ◽  
Vol 73 (2) ◽  
pp. 255-262 ◽  
Author(s):  
S. S. Dragomir

Some elementary inequalities providing upper bounds for the difference of the norm and the numerical radius of a bounded linear operator on Hilbert spaces under appropriate conditions are given.


Sign in / Sign up

Export Citation Format

Share Document