scholarly journals Bounded point evaluations for cyclic Hilbert space operators

2003 ◽  
Vol 4 (2) ◽  
pp. 301
Author(s):  
A. Bourhim

<p>In this talk, to be given at a conference at Seconda Università degli Studi di Napoli in September 2001, we shall describe the set of analytic bounded point evaluations for an arbitrary cyclic bounded linear operator T on a Hilbert space H and shall answer some questions due to L. R. Williams.</p>

2003 ◽  
Vol 2003 (30) ◽  
pp. 1899-1909
Author(s):  
A. Bourhim

We describe the set of analytic bounded point evaluations for an arbitrary cyclic bounded linear operatorTon a Hilbert spaceℋ; some related consequences are discussed. Furthermore, we show that two densely similar cyclic Banach-space operators possessing Bishop's property(β)have equal approximate point spectra.


2014 ◽  
Vol 11 (3) ◽  
pp. 1267-1273
Author(s):  
Baghdad Science Journal

In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.


1989 ◽  
Vol 32 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Domingo A. Herrero

AbstractA bounded linear operator A on a complex, separable, infinite dimensional Hilbert space is called finite if for each . It is shown that the class of all finite operators is a closed nowhere dense subset of


1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Karim Hedayatian ◽  
Lotfollah Karimi

A bounded linear operatorTon a Hilbert spaceℋ, satisfying‖T2h‖2+‖h‖2≥2‖Th‖2for everyh∈ℋ, is called a convex operator. In this paper, we give necessary and sufficient conditions under which a convex composition operator on a large class of weighted Hardy spaces is an isometry. Also, we discuss convexity of multiplication operators.


2008 ◽  
Vol 39 (4) ◽  
pp. 347-352 ◽  
Author(s):  
Gyan Prakash Tripathi ◽  
Nand Lal

A bounded linear operator $ T $ on a Hilbert space $ H $ is called antinormal if the distance of $ T $ from the set of all normal operators is equal to norm of $ T $. In this paper, we give a complete characterization of antinormal composition operators on $ \ell^2 $, where $ \ell^2 $ is the Hilbert space of all square summable sequences of complex numbers under standard inner product on it.


1971 ◽  
Vol 23 (1) ◽  
pp. 132-150 ◽  
Author(s):  
Bernard Niel Harvey

In this paper we represent certain linear operators in a space with indefinite metric. Such a space may be a pair (H, B), where H is a separable Hilbert space, B is a bilinear functional on H given by B(x, y) = [Jx, y], [, ] is the Hilbert inner product in H, and J is a bounded linear operator such that J = J* and J2 = I. If T is a linear operator in H, then ‖T‖ is the usual operator norm. The operator J above has two eigenspaces corresponding to the eigenvalues + 1 and –1.In case the eigenspace in which J induces a positive operator has finite dimension k, a general spectral theory is known and has been developed principally by Pontrjagin [25], Iohvidov and Kreĭn [13], Naĭmark [20], and others.


1974 ◽  
Vol 17 (2) ◽  
pp. 295-296 ◽  
Author(s):  
Fredric M. Pollack

The numerical range W(T) of a bounded linear operator T on a Hilbert space H is defined byW(T) is always a convex subset of the plane [1] and clearly W(T) is bounded since it is contained in the ball of radius ‖T‖ about the origin. Which non-empty convex bounded subsets of the plane are the numerical range of an operator? The theorem we prove below shows that every non-empty convex bounded subset of the plane is W(T) for some T.


1968 ◽  
Vol 9 (2) ◽  
pp. 106-110 ◽  
Author(s):  
T. A. Gillespie ◽  
T. T. West

A Riesz operator is a bounded linear operator on a Banach space which possesses a Riesz spectral theory. These operators have been studied in [5] and [6]. In §2 of this paper we characterise Riesz operators in terms of their resolvent operators. In [6] it was shown that every Riesz operator on a Hilbert space can be decomposed into the sum of compact and quasi-nilpotent parts. §3 contains an example to show that these parts cannot, in general, be chosen to commute. In §4 the eigenset of a Riesz operator is defined. It is a sequence of quadruples each of which consists of an eigenvalue, the corresponding spectral projection, index and nilpotent part. This sequence satisfies certain obvious conditions, and the question arises of the existence of a Riesz operator which has such a sequence as its eigenset. We give an example of an eigenset which has no corresponding Riesz operator.


Filomat ◽  
2016 ◽  
Vol 30 (10) ◽  
pp. 2847-2856
Author(s):  
S.S. Dragomir

By the help of power series f(z)=??,n=0 anzn we can naturally construct another power series that has as coefficients the absolute values of the coefficients of f , namely fa(z):= ??,n=0 |an|zn. Utilising these functions we show among others that r[f(T)] ? fa [r(T)] where r (T) denotes the spectral radius of the bounded linear operator T on a complex Hilbert space while ||T|| is its norm. When we have A and B two commuting operators, then r2[f(AB)]? fa(r2(A)) fa(r2(B)) and r[f(AB)]?1/2[fa(||AB||)+fa(||A2||1/2||B2||1/2)].


Sign in / Sign up

Export Citation Format

Share Document