scholarly journals Representation with majorant of the Schwarz lemma at the boundary

2017 ◽  
Vol 101 (115) ◽  
pp. 191-196
Author(s):  
Bülent Örnek ◽  
Tuğba Akyel

Let f be a holomorphic function in the unit disc and |f(z)?1| < 1 for |z| < 1. We generalize the uniqueness portion of Schwarz?s lemma and provide sufficient conditions on the local behavior of f near a finite set of boundary points that needed for f to be a finite Blaschke product.

Filomat ◽  
2018 ◽  
Vol 32 (6) ◽  
pp. 2321-2325 ◽  
Author(s):  
Tuğba Akyel ◽  
Tahir Azeroğlu

Let f be an holomorphic function the unit disk to itself. We provide conditions on the local behavior of f along boundary near a finite set of the boundary points that requires f to be a finite Blaschke product.


1971 ◽  
Vol 23 (2) ◽  
pp. 257-269 ◽  
Author(s):  
Stephen Fisher

The theorems in this paper are all concerned with either pointwise or uniform approximation by functions which have unit modulus or by convex combinations of such functions. The results are related to, and are outgrowths of, the theorems in [4; 5; 10].In § 1, we show that a function bounded by 1, which is analytic in the open unit disc Δ and continuous on may be approximated uniformly on the set where it has modulus 1 (subject to certain restrictions; see Theorem 1) by a finite Blaschke product; that is, by a function of the form*where |λ| = 1 and |αi| < 1, i = 1, …, N. In § 1 we also discuss pointwise approximation by Blaschke products with restricted zeros.


2021 ◽  
Vol 109 (123) ◽  
pp. 153-162
Author(s):  
Bülent Örnek

A boundary version of the Schwarz lemma for meromorphic functions is investigated. For the function Inf(z) = 1/z +?? k=2 knck?2zk?2, belonging to the class of W, we estimate from below the modulus of the angular derivative of the function on the boundary point of the unit disc.


Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 2953-2959
Author(s):  
Nafi Örnek ◽  
Timur Düzenli

In this paper, a boundary version of the uniqueness part of the Schwarz lemma for driving point impedance functions has been investigated. Also, more general results have been obtained for a different version of the Burns-Krantz uniqueness theorem. In these results, as different from the Burns-Krantz theorem, only the boundary points have been used as the conditions on the function. Also, more general majorants will be taken instead of power majorants in (1.1).


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3443-3452
Author(s):  
Bülent Örnek

In this paper, a boundary version of the Schwarz lemma for meromorphic functions is investigated. The modulus of the angular derivative of the meromorphic function Inf(z)=1/z+2nc0+3nc1z+4nc2z2+... that belongs to the class of M on the boundary point of the unit disc has been estimated from below.


Filomat ◽  
2019 ◽  
Vol 33 (10) ◽  
pp. 2995-3011
Author(s):  
Bülent Örnek

In this paper, we give a simple proof for the boundary Schwarz lemma at the upper half plane. Considering that f(z) is a holomorphic function defined on the upper half plane, we derive inequalities for the modulus of derivative of f (z), |f'(0)| by assuming that the f(z) function is also holomorphic at the boundary point z = 0 on the real axis with f(0)=Rf(i).


1968 ◽  
Vol 32 ◽  
pp. 277-282 ◽  
Author(s):  
Paul Gauthier

Gavrilov [2] has shown that a holomorphic function f(z) in the unit disc |z|<1 is normal, in the sense of Lehto and Virtanen [5, p. 86], if and only if f(z) does not possess a sequence of ρ-points in the sense of Lange [4]. Gavrilov has also obtained an analagous result for meromorphic functions by introducing the property that a meromorphic function in the unit disc have a sequence of P-points. He has shown that a meromorphic function in the unit disc is normal if and only if it does not possess a sequence of P-points.


2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.


Sign in / Sign up

Export Citation Format

Share Document