transitive permutation group
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Primož Potočnik ◽  
Pablo Spiga

AbstractThe minimal degree of a permutation group 𝐺 is defined as the minimal number of non-fixed points of a non-trivial element of 𝐺. In this paper, we show that if 𝐺 is a transitive permutation group of degree 𝑛 having no non-trivial normal 2-subgroups such that the stabilizer of a point is a 2-group, then the minimal degree of 𝐺 is at least \frac{2}{3}n. The proof depends on the classification of finite simple groups.


2020 ◽  
Vol 32 (3) ◽  
pp. 713-721
Author(s):  
Andrea Lucchini ◽  
Mariapia Moscatiello ◽  
Pablo Spiga

AbstractWe show that there exists a constant a such that, for every subgroup H of a finite group G, the number of maximal subgroups of G containing H is bounded above by {a\lvert G:H\rvert^{3/2}}. In particular, a transitive permutation group of degree n has at most {an^{3/2}} maximal systems of imprimitivity. When G is soluble, generalizing a classic result of Tim Wall, we prove a much stronger bound, that is, the number of maximal subgroups of G containing H is at most {\lvert G:H\rvert-1}.


2020 ◽  
Vol 23 (3) ◽  
pp. 393-397
Author(s):  
Wolfgang Knapp ◽  
Peter Schmid

AbstractLet G be a finite transitive permutation group of degree n, with point stabilizer {H\neq 1} and permutation character π. For every positive integer t, we consider the generalized character {\psi_{t}=\rho_{G}-t(\pi-1_{G})}, where {\rho_{G}} is the regular character of G and {1_{G}} the 1-character. We give necessary and sufficient conditions on t (and G) which guarantee that {\psi_{t}} is a character of G. A necessary condition is that {t\leq\min\{n-1,\lvert H\rvert\}}, and it turns out that {\psi_{t}} is a character of G for {t=n-1} resp. {t=\lvert H\rvert} precisely when G is 2-transitive resp. a Frobenius group.


10.37236/8795 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Aadyot Bhatnagar

We explore the relation between two natural symmetry properties of voting rules. The first is transitive-symmetry – the property of invariance to a transitive permutation group – while the second is the "unbiased" property of every voter having the same influence for all i.i.d. probability measures. We show that these properties are distinct by two constructions – one probabilistic, one explicit – of rules that are unbiased but not transitive-symmetric.


10.37236/7097 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Pablo Spiga

A Frobenius group is a transitive permutation group that is not regular and such that only the identity fixes more than one point. A digraphical, respectively graphical, Frobenius representation, DFR and GFR for short, of a Frobenius group $F$ is a digraph, respectively graph, whose automorphism group as a group of permutations of the vertex set is $F$. The problem of classifying which Frobenius groups admit a DFR and GFR has been proposed by Mark Watkins and Thomas Tucker and is a natural extension of the problem of classifying which groups that have a digraphical, respectively graphical, regular representation.In this paper, we give a partial answer to a question of Mark Watkins and Thomas Tucker concerning Frobenius representations: "All but finitely many Frobenius groups with a given Frobenius complement have a DFR".  


2013 ◽  
Vol 63 (6) ◽  
Author(s):  
Temha Erkoç ◽  
Utku Yilmaztürk

AbstractA finite group whose irreducible complex characters are rational valued is called a rational group. Thus, G is a rational group if and only if N G(〈x〉)/C G(〈x〉) ≌ Aut(〈x〉) for every x ∈ G. For example, all symmetric groups and their Sylow 2-subgroups are rational groups. Structure of rational groups have been studied extensively, but the general classification of rational groups has not been able to be done up to now. In this paper, we show that a full symmetric group of prime degree does not have any rational transitive proper subgroup and that a rational doubly transitive permutation group containing a full cycle is the full symmetric group. We also obtain several results related to the study of rational groups.


10.37236/587 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Shonda Gosselin

For a positive integer $q$, a $k$-uniform hypergraph $X=(V,E)$ is $q$-complementary if there exists a permutation $\theta$ on $V$ such that the sets $E, E^{\theta}, E^{\theta^2},\ldots, E^{\theta^{q-1}}$ partition the set of $k$-subsets of $V$. The permutation $\theta$ is called a $q$-antimorphism of $X$. The well studied self-complementary uniform hypergraphs are 2-complementary. For an integer $n$ and a prime $p$, let $n_{(p)}=\max\{i:p^i \text{divides} n\}$. In this paper, we prove that a vertex-transitive $q$-complementary $k$-hypergraph of order $n$ exists if and only if $n^{n_{(p)}}\equiv 1 (\bmod q^{\ell+1})$ for every prime number $p$, in the case where $q$ is prime, $k = bq^\ell$ or $k=bq^{\ell}+1$ for a positive integer $b < k$, and $n\equiv 1(\bmod q^{\ell+1})$. We also find necessary conditions on the order of these structures when they are $t$-fold-transitive and $n\equiv t (\bmod q^{\ell+1})$, for $1\leq t < k$, in which case they correspond to large sets of isomorphic $t$-designs. Finally, we use group theoretic results due to Burnside and Zassenhaus to determine the complete group of automorphisms and $q$-antimorphisms of these hypergraphs in the case where they have prime order, and then use this information to write an algorithm to generate all of these objects. This work extends previous, analagous results for vertex-transitive self-complementary uniform hypergraphs due to Muzychuk, Potočnik, Šajna, and the author. These results also extend the previous work of Li and Praeger on decomposing the orbitals of a transitive permutation group.


2011 ◽  
Vol 166 (3-4) ◽  
pp. 497-504 ◽  
Author(s):  
Primož Potočnik ◽  
Steve Wilson

2006 ◽  
Vol 80 (1) ◽  
pp. 45-64
Author(s):  
Cheryl E. Praeger

AbstractVarious lattices of subgroups of a finite transitive permutation group G can be used to define a set of ‘basic’ permutation groups associated with G that are analogues of composition factors for abstract finite groups. In particular G can be embedded in an iterated wreath product of a chain of its associated basic permutation groups. The basic permutation groups corresponding to the lattice L of all subgroups of G containing a given point stabiliser are a set of primitive permutation groups. We introduce two new subgroup lattices contained in L, called the seminormal subgroup lattice and the subnormal subgroup lattice. For these lattices the basic permutation groups are quasiprimitive and innately transitive groups, respectively.


2005 ◽  
Vol 71 (3) ◽  
pp. 493-503 ◽  
Author(s):  
John D. Dixon

The natural character π of a finite transitive permutation group G has the form 1G + θ where θ is a character which affords a rational representation of G. We call G a QI-group if this representation is irreducible over ℚ. Every 2-transitive group is a QI-group, but the latter class of groups is larger. It is shown that every QI-group is ¾-transitive and primitive, and that it is either almost simple or of affine type. QI-groups of affine type are completely determined relative to the 2-transitive affine groups, and partial information is obtained about the socles of simply transitive almost simple QI-groups. The only known simply transitive almost simple QI-groups are of degree 2k−1(2k − 1) with 2k − 1 prime and socle isomorphic to PSL(2, 2k).


Sign in / Sign up

Export Citation Format

Share Document