disjoint cycles
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 345 (4) ◽  
pp. 112789
Author(s):  
Jie Zhang ◽  
Jin Yan

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3209
Author(s):  
Jelena Sedlar ◽  
Riste Škrekovski

A locally irregular graph is a graph in which the end vertices of every edge have distinct degrees. A locally irregular edge coloring of a graph G is any edge coloring of G such that each of the colors induces a locally irregular subgraph of G. A graph G is colorable if it allows a locally irregular edge coloring. The locally irregular chromatic index of a colorable graph G, denoted by χirr′(G), is the smallest number of colors used by a locally irregular edge coloring of G. The local irregularity conjecture claims that all graphs, except odd-length paths, odd-length cycles and a certain class of cacti are colorable by three colors. As the conjecture is valid for graphs with a large minimum degree and all non-colorable graphs are vertex disjoint cacti, we study rather sparse graphs. In this paper, we give a cactus graph B which contradicts this conjecture, i.e., χirr′(B)=4. Nevertheless, we show that the conjecture holds for unicyclic graphs and cacti with vertex disjoint cycles.


Author(s):  
Roozbeh Hazrat ◽  
Alfilgen N. Sebandal ◽  
Jocelyn P. Vilela
Keyword(s):  

10.37236/9192 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Marthe Bonamy ◽  
François Dross ◽  
Tomáš Masařík ◽  
Andrea Munaro ◽  
Wojciech Nadara ◽  
...  

We confirm Jones' Conjecture for subcubic graphs. Namely, if a subcubic planar graph does not contain $k+1$ vertex-disjoint cycles, then it suffices to delete $2k$ vertices to obtain a forest.


10.37236/9670 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Emily Marshall ◽  
Michael Santana

In 1963, Corrádi and Hajnal showed that if $G$ is an $n$-vertex graph with  $n \ge 3k$ and $\delta(G) \ge 2k$, then $G$ will contain $k$ disjoint cycles; furthermore, this result is best possible, both in terms of the number of vertices as well as the minimum degree. In this paper we focus on an analogue of this result for theta graphs.  Results from Kawarabayashi and Chiba et al. showed that if $n = 4k$ and $\delta(G) \ge \lceil \frac{5}{2}k \rceil$, or if $n$ is large with respect to $k$ and $\delta(G) \ge 2k+1$, respectively, then $G$ contains $k$ disjoint theta graphs.  While the minimum degree condition in both results are sharp for the number of vertices considered, this leaves a gap in which no sufficient minimum degree condition is known. Our main result in this paper resolves this by showing if $n \ge 4k$ and $\delta(G) \ge \lceil \frac{5}{2}k\rceil$, then $G$ contains $k$ disjoint theta graphs. Furthermore, we show this minimum degree condition is sharp for more than just $n = 4k$, and we discuss how and when the sharp minimum degree condition may transition from $\lceil \frac{5}{2}k\rceil$ to $2k+1$.


2021 ◽  
Vol 300 ◽  
pp. 1-8
Author(s):  
Jelena Sedlar ◽  
Riste Škrekovski

Author(s):  
Vera Traub ◽  
Thorben Tröbst

AbstractWe consider the capacitated cycle covering problem: given an undirected, complete graph G with metric edge lengths and demands on the vertices, we want to cover the vertices with vertex-disjoint cycles, each serving a demand of at most one. The objective is to minimize a linear combination of the total length and the number of cycles. This problem is closely related to the capacitated vehicle routing problem (CVRP) and other cycle cover problems such as min-max cycle cover and bounded cycle cover. We show that a greedy algorithm followed by a post-processing step yields a $$(2 + \frac{2}{7})$$ ( 2 + 2 7 ) -approximation for this problem by comparing the solution to a polymatroid relaxation. We also show that the analysis of our algorithm is tight and provide a $$2 + \epsilon $$ 2 + ϵ lower bound for the relaxation.


2021 ◽  
Vol 27 (6) ◽  
pp. 544-563
Author(s):  
Edinelço Dalcumune ◽  
Luis Antonio Brasil Kowada ◽  
André da Cunha Ribeiro ◽  
Celina Miraglia Herrera de Figueiredo ◽  
Franklin de Lima Marquezino

We present a new algorithm for synthesis of reversible circuits for arbitrary n-bit bijective functions. This algorithm uses generalized Toffoli gates, which include positive and negative controls. Our algorithm is divided into two parts. First, we use partially controlled gen- eralized Toffoli gates, progressively increasing the number of controls. Second, exploring the properties of the representation of permutations in disjoint cycles, we apply generalized Toffoli gates with controls on all lines except for the target line. Therefore, new in the method is the fact that the obtained circuits use first low cost gates and consider increasing costs towards the end of the synthesis. In addition, we employ two bidirectional synthesis strategies to improve the gate count, which is the metric used to compare the results obtained by our algorithm with the results presented in the literature. Accordingly, our experimental results consider all 3-bit bijective functions and twenty widely used benchmark functions. The results obtained by our synthesis algorithm are competitive when compared with the best results known in the literature, considering as a complexity metric just the number of gates, as done by alternative best heuristics found in the literature. For example, for all 3-bit bijective functions using generalized Toffoli gates library, we obtained the best so far average count of 5.23.


Algorithmica ◽  
2021 ◽  
Author(s):  
Stéphane Bessy ◽  
Marin Bougeret ◽  
R. Krithika ◽  
Abhishek Sahu ◽  
Saket Saurabh ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document