scholarly journals Transforms for minimal surfaces in 5-dimensional space forms

2017 ◽  
Vol 102 (116) ◽  
pp. 241-246 ◽  
Author(s):  
Makoto Sakaki

For a minimal surface in a 5-dimensional space form, we give transforms to get another minimal surface in another 5-or 4-dimensional space form.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tomoya Miura ◽  
Shun Maeta

Abstract We show that any triharmonic Riemannian submersion from a 3-dimensional space form into a surface is harmonic. This is an affirmative partial answer to the submersion version of the generalized Chen conjecture. Moreover, a non-existence theorem for f -biharmonic Riemannian submersions is also presented.


Author(s):  
Paul Baird ◽  
John C. Wood

AbstractA complete classification is given of harmonic morphisms to a surface and conformal foliations by geodesics, with or without isolated singularities, of a simply-connected space form. The method is to associate to any such a holomorphic map from a Riemann surface into the space of geodesics of the space form. Properties such as nonintersecting fibres (or leaves) are translated into conditions on the holomorphic mapping which show it must have a simple form corresponding to a standard example.


Author(s):  
Ahmet Yildiz

Let $\tilde{M}^{m}(c)$ be a complex $m$-dimensional space form of holomorphic sectional curvature $c$ and $M^{n}$ be a complex $n$-dimensional Kaehlerian submanifold of $\tilde{M}^{m}(c).$ We prove that if $M^{n}$ is pseudo-parallel and $Ln-\frac{1}{2}(n+2)c\geqslant 0$ then $M$ $^{n}$ is totally geodesic. Also, we study Kaehlerian submanifolds of complex space form with recurrent second fundamental form.


Author(s):  
A. Fogden

AbstractA systematic analysis of a family of triply periodic minimal surfaces of genus seven and trigonal symmetry is given. The family is found to contain five such surfaces free from self-intersections, three of which are previously unknown. Exact parametrisations of all surfaces are provided using the Weierstrass representation.


Sign in / Sign up

Export Citation Format

Share Document