scholarly journals Properties of the nearly kähler S3×S3

2018 ◽  
Vol 103 (117) ◽  
pp. 147-158 ◽  
Author(s):  
Marilena Moruz ◽  
Luc Vrancken

We show how the metric, the almost complex structure and the almost product structure of the homogeneous nearly Kahler S3 ? S3 can be recovered from a submersion ? : S3 ? S3 ? S3 ? S3 ? S3. On S3 ? S3 ? S3 we have the maps obtained either by changing two coordinates, or by cyclic permutations. We show that these maps project to maps from S3 ? S3 to S3 ? S3 and we investigate their behavior.

2011 ◽  
Vol 08 (01) ◽  
pp. 115-131 ◽  
Author(s):  
MANCHO MANEV ◽  
KOSTADIN GRIBACHEV

The subject of investigations are the almost hypercomplex manifolds with Hermitian and anti-Hermitian (Norden) metrics. A linear connection D is introduced such that the structure of these manifolds is parallel with respect to D and its torsion is totally skew-symmetric. The class of the nearly Kähler manifolds with respect to the first almost complex structure is of special interest. It is proved that D has a D-parallel torsion and is weak if it is not flat. Some curvature properties of these manifolds are studied.


2018 ◽  
Vol 29 (14) ◽  
pp. 1850099 ◽  
Author(s):  
Qing Ding ◽  
Shiping Zhong

In this paper, by using the [Formula: see text]-structure on Im[Formula: see text] from the octonions [Formula: see text], the [Formula: see text]-binormal motion of curves [Formula: see text] in [Formula: see text] associated to the almost complex structure on [Formula: see text] is studied. The motion is proved to be equivalent to Schrödinger flows from [Formula: see text] to [Formula: see text], and also to a nonlinear Schrödinger-type system (NLSS) in three unknown complex functions that generalizes the famous correspondence between the binormal motion of curves in [Formula: see text] and the focusing nonlinear Schrödinger (NLS) equation. Some related geometric properties of the surface [Formula: see text] in Im[Formula: see text] swept by [Formula: see text] are determined.


2008 ◽  
Vol 17 (11) ◽  
pp. 1429-1454 ◽  
Author(s):  
FRANCESCO COSTANTINO

We define and study branched shadows of 4-manifolds as a combination of branched spines of 3-manifolds and of Turaev's shadows. We use these objects to combinatorially represent 4-manifolds equipped with Spinc-structures and homotopy classes of almost complex structures. We then use branched shadows to study complex 4-manifolds and prove that each almost complex structure on a 4-dimensional handlebody is homotopic to a complex one.


2018 ◽  
Vol 30 (1) ◽  
pp. 109-128 ◽  
Author(s):  
Leonardo Bagaglini ◽  
Marisa Fernández ◽  
Anna Fino

Abstract We show obstructions to the existence of a coclosed {\mathrm{G}_{2}} -structure on a Lie algebra {\mathfrak{g}} of dimension seven with non-trivial center. In particular, we prove that if there exists a Lie algebra epimorphism from {\mathfrak{g}} to a six-dimensional Lie algebra {\mathfrak{h}} , with the kernel contained in the center of {\mathfrak{g}} , then any coclosed {\mathrm{G}_{2}} -structure on {\mathfrak{g}} induces a closed and stable three form on {\mathfrak{h}} that defines an almost complex structure on {\mathfrak{h}} . As a consequence, we obtain a classification of the 2-step nilpotent Lie algebras which carry coclosed {\mathrm{G}_{2}} -structures. We also prove that each one of these Lie algebras has a coclosed {\mathrm{G}_{2}} -structure inducing a nilsoliton metric, but this is not true for 3-step nilpotent Lie algebras with coclosed {\mathrm{G}_{2}} -structures. The existence of contact metric structures is also studied.


Sign in / Sign up

Export Citation Format

Share Document