scholarly journals Numerical approach to simulate diffusion model of a fluid-flow in a porous media

2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 255-261
Author(s):  
Yones Esmaeelzade Aghdam ◽  
Behnaz Farnam ◽  
Hosein Jafari

When a particle distributes at a rate that deviates from the classical Brownian motion model, fractional space derivatives have been used to simulate anomalous diffusion or dispersion. When a fractional derivative substitutes the second-order derivative in a diffusion or dispersion model, amplified diffusion occurs (named super-diffusion). The proposed approach in this paper allows seeing the physical background of the newly defined Caputo space-time-fractional derivative and indicates that the order of convergence to approximate such equations has increased.

1987 ◽  
Vol 74 (2) ◽  
pp. 271-287 ◽  
Author(s):  
J. R. Norris ◽  
L. C. G. Rogers ◽  
David Williams

2018 ◽  
Vol 867 (2) ◽  
pp. 163 ◽  
Author(s):  
Mario Pasquato ◽  
Paolo Miocchi ◽  
Suk-Jin Yoon

1989 ◽  
Vol 03 (14) ◽  
pp. 1093-1099 ◽  
Author(s):  
H. DEKKER

Kramers' Brownian motion model for escape from a metastable potential well is reconsidered in terms of the particle's energy and the action variable near the peak of the barrier. The pertinent phase space density ρ(ε, s) is uniquely determined (i) by means of a spectral analysis and (ii) upon specifying the energy distribution of (re-)entering particles. The ensuing decay rate Γ goes to zero in the low as well as in the high friction limit according to Kramers' original formulae. The nature of the intermediate turnover regime is critically discussed — and a comparison with related recent work by Büttiker, Harris and Landauer, Mel'nikov and Meshkov, and Grabert is made — while a problem with the underlying density is pointed out.


2019 ◽  
Vol 72 (1 suppl 1) ◽  
pp. 9-15 ◽  
Author(s):  
André Lubene Ramos ◽  
Douglas Batista Mazzinghy ◽  
Viviane da Silva Borges Barbosa ◽  
Michel Melo Oliveira ◽  
Gilberto Rodrigues da Silva

Sign in / Sign up

Export Citation Format

Share Document