scholarly journals A local limit theorem for Poisson binomial random variables

ScienceAsia ◽  
2021 ◽  
Vol 47 (1) ◽  
pp. 111
Author(s):  
Tatpon Siripraparat ◽  
Kritsana Neammanee
2013 ◽  
Vol 50 (04) ◽  
pp. 1206-1212 ◽  
Author(s):  
Lars Holst

Formulae for ζ(2n) andLχ4(2n+ 1) involving Euler and tangent numbers are derived using the hyperbolic secant probability distribution and its moment generating function. In particular, the Basel problem, where ζ(2) = π2/ 6, is considered. Euler's infinite product for the sine is also proved using the distribution of sums of independent hyperbolic secant random variables and a local limit theorem.


1980 ◽  
Vol 87 (1) ◽  
pp. 179-187 ◽  
Author(s):  
Sujit K. Basu ◽  
Makoto Maejima

AbstractLet {Xn} be a sequence of independent random variables each having a common d.f. V1. Suppose that V1 belongs to the domain of normal attraction of a stable d.f. V0 of index α 0 ≤ α ≤ 2. Here we prove that, if the c.f. of X1 is absolutely integrable in rth power for some integer r > 1, then for all large n the d.f. of the normalized sum Zn of X1, X2, …, Xn is absolutely continuous with a p.d.f. vn such thatas n → ∞, where v0 is the p.d.f. of Vo.


Bernoulli ◽  
2016 ◽  
Vol 22 (4) ◽  
pp. 2101-2112 ◽  
Author(s):  
Alberto Lanconelli ◽  
Aurel I. Stan

1978 ◽  
Vol 84 (2) ◽  
pp. 351-359 ◽  
Author(s):  
Sujit K. Basu

AbstractLet {Xn} be a sequence of iid random variables. If the common charac-teristic function is absolutely integrable in mth power for some integer m ≥ 1, then Zn = n−½(X1 + … + Xn) has a pdf fn for all n ≥ m. Here we give a necessary and sufficient condition for sup as n. → ∞, where φ (x) is the standard normal pdf and M(x) is a non-decreasing function of x ≥ 0 such that M(0) > 0 and M(x)/xδ is non-increasing for 0 < δ ≤ 1.


Sign in / Sign up

Export Citation Format

Share Document