[Some Useful Extensions of the Usual Correspondence Analysis Approach and the Usual Log-Linear Models Approach in the Analysis of Contingency Tables]: Reply to Discussion

1986 ◽  
Vol 54 (3) ◽  
pp. 291 ◽  
Author(s):  
Leo A. Goodman
2016 ◽  
Vol 101 (1) ◽  
pp. 51-65 ◽  
Author(s):  
Haresh D. Rochani ◽  
Robert L. Vogel ◽  
Hani M. Samawi ◽  
Daniel F. Linder

2020 ◽  
pp. 1-7
Author(s):  
Fatin N.S.A. ◽  
Norlida M.N. ◽  
Siti Z.M.J.

Log-linear model is a technique used to analyze the cross-classification categorical data or the contingency table. It is used to obtain the parsimony models that describe the interaction between the categorical variables in contingency tables. Log-linear models are commonly used in evaluating higher dimensional contingency tables that involves more than two categorical variables. This study focuses on analyzing data of poisoned patients from 2012 to 2014 using log-linear model. There are two model analyzed; model for demographic data of patients and model of poisoning information. For the first model, the variables involved are gender, age, race and state. Variables for the second model are circumstance of exposure, type of exposure, location of exposure, route of exposure and types of poison. Both log-linear models are developed to investigate the association between variables in the model. As a result of this study, the best model for demographic data and poisoning information are the model with three-ways interaction. For the best model of demographic data, there is an association between gender, age and race, race, gender and state as well as age, race and state. Meanwhile, the best model for poisoning information reveals that there is relationship between circumstance of exposure, route of exposure and type of poison, location of exposure, route of exposure and type of poison, circumstance of exposure, type of exposure and route of exposure, circumstance of exposure, location of exposure and route of exposure, circumstance of exposure, type of exposure and type of poison and also type of exposure, location of exposure and type of poison. Keywords: log-linear; demographic; gender; age; race; state; circumstance of exposure; type of exposure; location of exposure; route of exposure; types of poison


Biometrics ◽  
1972 ◽  
Vol 28 (1) ◽  
pp. 137 ◽  
Author(s):  
James E. Grizzle ◽  
O. Dale Williams

2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Eric J. Beh ◽  
Thomas B. Farver

Estimating linear-by-linear association has long been an important topic in the analysis of contingency tables. For ordinal variables, log-linear models may be used to detect the strength and magnitude of the association between such variables, and iterative procedures are traditionally used. Recently, studies have shown, by way of example, three non-iterative techniques can be used to quickly and accurately estimate the parameter. This paper provides a computational study of these procedures, and the results show that they are extremely accurate when compared with estimates obtained using Newton’s unidimensional method.


Sign in / Sign up

Export Citation Format

Share Document