scholarly journals On the starshapeness of G/G/c queueing systems

1991 ◽  
Vol 23 (2) ◽  
pp. 431-435 ◽  
Author(s):  
J. George Shanthikumar ◽  
Couchen Wu

In this paper we show that the waiting and the sojourn times of a customer in a single-stage, multiple-server, G/G/c queueing system are increasing and starshaped with respect to the mean service time. Usefulness of this result in the design of the optimal service speed in the G/G/c queueing system is also demonstrated.

1991 ◽  
Vol 23 (02) ◽  
pp. 431-435
Author(s):  
J. George Shanthikumar ◽  
Couchen Wu

In this paper we show that the waiting and the sojourn times of a customer in a single-stage, multiple-server, G/G/c queueing system are increasing and starshaped with respect to the mean service time. Usefulness of this result in the design of the optimal service speed in the G/G/c queueing system is also demonstrated.


1972 ◽  
Vol 9 (3) ◽  
pp. 642-649 ◽  
Author(s):  
Jacqueline Loris-Teghem

A generalized queueing system with (N + 2) types of triplets (delay, service time, probability of joining the queue) and with uniformly bounded sojourn times is considered. An expression for the generating function of the Laplace-Stieltjes transforms of the waiting time distributions is derived analytically, in a case where some of the random variables defining the model have a rational Laplace-Stieltjes transform.The standard Kl/Km/1 queueing system with uniformly bounded sojourn times is considered in particular.


1997 ◽  
Vol 34 (03) ◽  
pp. 800-805 ◽  
Author(s):  
Vyacheslav M. Abramov

This paper consists of two parts. The first part provides a more elementary proof of the asymptotic theorem of the refusals stream for an M/GI/1/n queueing system discussed in Abramov (1991a). The central property of the refusals stream discussed in the second part of this paper is that, if the expectations of interarrival and service time of an M/GI/1/n queueing system are equal to each other, then the expectation of the number of refusals during a busy period is equal to 1. This property is extended for a wide family of single-server queueing systems with refusals including, for example, queueing systems with bounded waiting time.


1990 ◽  
Vol 27 (02) ◽  
pp. 409-416 ◽  
Author(s):  
Rhonda Righter ◽  
J. George Shanthikumar ◽  
Genji Yamazaki

It is shown that among all work-conserving service disciplines that are independent of the future history, the first-come-first-served (FCFS) service discipline minimizes [maximizes] the average sojourn time in a G/GI/1 queueing system with new better [worse] than used in expectation (NBUE[NWUE]) service time distribution. We prove this result using a new basic identity of G/GI/1 queues that may be of independent interest. Using a relationship between the workload and the number of customers in the system with different lengths of attained service it is shown that the average sojourn time is minimized [maximized] by the least-attained-service time (LAST) service discipline when the service time has the decreasing [increasing] mean residual life (DMRL[IMRL]) property.


1968 ◽  
Vol 5 (02) ◽  
pp. 461-466
Author(s):  
Gerold Pestalozzi

A queueing system is considered where each item has a property associated with it, and where the service time interposed between two items depends on the properties of both of these items. The steady state of a single-channel queue of this type, with Poisson input, is investigated. It is shown how the probability generating function of the number of items waiting can be found. Easily applied approximations are given for the mean number of items waiting and for the average waiting time.


1990 ◽  
Vol 27 (2) ◽  
pp. 409-416 ◽  
Author(s):  
Rhonda Righter ◽  
J. George Shanthikumar ◽  
Genji Yamazaki

It is shown that among all work-conserving service disciplines that are independent of the future history, the first-come-first-served (FCFS) service discipline minimizes [maximizes] the average sojourn time in a G/GI/1 queueing system with new better [worse] than used in expectation (NBUE[NWUE]) service time distribution. We prove this result using a new basic identity of G/GI/1 queues that may be of independent interest. Using a relationship between the workload and the number of customers in the system with different lengths of attained service it is shown that the average sojourn time is minimized [maximized] by the least-attained-service time (LAST) service discipline when the service time has the decreasing [increasing] mean residual life (DMRL[IMRL]) property.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1277
Author(s):  
Evsey Morozov ◽  
Michele Pagano ◽  
Irina Peshkova ◽  
Alexander Rumyantsev

The motivation of mixing distributions in communication/queueing systems modeling is that some input data (e.g., service time in queueing models) may follow several distinct distributions in a single input flow. In this paper, we study the sensitivity of performance measures on proximity of the service time distributions of a multiserver system model with two-component Pareto mixture distribution of service times. The theoretical results are illustrated by numerical simulation of the M/G/c systems while using the perfect sampling approach.


1999 ◽  
Vol 36 (4) ◽  
pp. 1240-1243 ◽  
Author(s):  
Rhonda Righter

Let Ln be the number of losses during a busy period of an M/GI/1/n queueing system. We develop a coupling between Ln and Ln+1 and use the resulting relationship to provide a simple proof that when the mean service time equals the mean interarrival time, ELn = 1 for all n. We also show that Ln is increasing in the convex sense when the mean service time equals the mean interarrival time, and it is increasing in the increasing convex sense when the mean service time is less than the mean interarrival time.


1999 ◽  
Vol 13 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Erol A. Peköz

Formulas are derived for moments of the number of refused customers in a busy period for the M/GI/1/n and the GI/M/1/n queueing systems. As an interesting special case for the M/GI/1/n system, we note that the mean number is 1 when the mean interarrival time equals the mean service time. This provides a more direct argument for a result given in Abramov [1].


1972 ◽  
Vol 9 (03) ◽  
pp. 642-649
Author(s):  
Jacqueline Loris-Teghem

A generalized queueing system with (N+ 2) types of triplets (delay, service time, probability of joining the queue) and with uniformly bounded sojourn times is considered. An expression for the generating function of the Laplace-Stieltjes transforms of the waiting time distributions is derived analytically, in a case where some of the random variables defining the model have a rational Laplace-Stieltjes transform.The standardKl/Km/1 queueing system with uniformly bounded sojourn times is considered in particular.


Sign in / Sign up

Export Citation Format

Share Document