A New Class of Generating Functions for Hypergeometric Polynomials

1970 ◽  
Vol 25 (2) ◽  
pp. 405
Author(s):  
David Zeitlin
Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.


2017 ◽  
Vol 10 (12) ◽  
pp. 1-5
Author(s):  
P. L. Rama Kameswari ◽  
P. L. Rama Kameswari ◽  
V. S. Bhagavan ◽  
◽  
◽  
...  

2002 ◽  
Vol 57 (2) ◽  
pp. 205-214 ◽  
Author(s):  
Young Hun Choi ◽  
Ömer Öztürk

2016 ◽  
Vol 57 (1) ◽  
pp. 67-89 ◽  
Author(s):  
N.U. Khan ◽  
T. Usman

Abstract In this paper, we introduce a unified family of Laguerre-based Apostol Bernoulli, Euler and Genocchi polynomials and derive some implicit summation formulae and general symmetry identities arising from different analytical means and applying generating functions. The result extend some known summations and identities of generalized Bernoulli, Euler and Genocchi numbers and polynomials.


Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.


Author(s):  
Waseem Khan ◽  
Nisar K S

In this paper, we introduce a new class of Hermite-Fubini numbers and polynomials and investigate some properties of these polynomials. We establish summation formulas of these polynomials by summation techniques series. Furthermore, we derive symmetric identities of Hermite-Fubini numbers and polynomials by using generating functions.


Sign in / Sign up

Export Citation Format

Share Document