Homogeneous $$q$$ q -difference equations and generating functions for $$q$$ q -hypergeometric polynomials

2015 ◽  
Vol 40 (1) ◽  
pp. 177-192 ◽  
Author(s):  
Jian Cao
Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.


2017 ◽  
Vol 10 (12) ◽  
pp. 1-5
Author(s):  
P. L. Rama Kameswari ◽  
P. L. Rama Kameswari ◽  
V. S. Bhagavan ◽  
◽  
◽  
...  

1980 ◽  
Vol 17 (01) ◽  
pp. 253-258 ◽  
Author(s):  
R. B. Nain ◽  
Kanwar Sen

For correlated random walks a method of transition probability matrices as an alternative to the much-used methods of probability generating functions and difference equations has been investigated in this paper. To illustrate the use of transition probability matrices for computing the various probabilities for correlated random walks, the transition probability matrices for restricted/unrestricted one-dimensional correlated random walk have been defined and used to obtain some of the probabilities.


2003 ◽  
Vol 2003 (57) ◽  
pp. 3633-3642 ◽  
Author(s):  
G. Dattoli ◽  
H. M. Srivastava ◽  
D. Sacchetti

We introduce new families of Hermite polynomials and of Bessel functions from a point of view involving the use of nonexponential generating functions. We study their relevant recurrence relations and show that they satisfy differential-difference equations which are isospectral to those of the ordinary case. We also indicate the usefulness of some of these new families.


Sign in / Sign up

Export Citation Format

Share Document