The Brauer Group of a Compact Hausdorff Space and n-Homogeneous C ∗ -Algebras

1972 ◽  
Vol 34 (1) ◽  
pp. 209
Author(s):  
Roger Howe

2015 ◽  
Vol 58 (1) ◽  
pp. 110-114 ◽  
Author(s):  
F. Kamalov

AbstractIt is well known that a discrete group that is both amenable and has Kazhdan’s Property T must be finite. In this note we generalize this statement to the case of transformation groups. We show that if G is a discrete amenable group acting on a compact Hausdorff space X, then the transformation group C*-algebra C*(X; G) has Property T if and only if both X and G are finite. Our approach does not rely on the use of tracial states on C*(X; G).



2013 ◽  
Vol 156 (2) ◽  
pp. 229-239 ◽  
Author(s):  
CHI–KEUNG NG

AbstractIn this paper, we extend the definition of property T and strong property T to general C*-algebras (not necessarily unital). We show that if an inclusion pair of locally compact groups (G,H) has property T, then (C*(G), C*(H)) has property T. As a partial converse, if T is abelian and C*(G) has property T, then T is compact. We also show that if Ω is a first countable locally compact Hausdorff space, then C0(Ω) has (strong) property T if and only if Ω is discrete. Furthermore, the non-unital C*-algebra $c_0(\mathbb{Z}^n)\rtimes SL_n(\mathbb{Z})$ has strong property T when n ≥ 3. We also give some equivalent forms of strong property T, which are new even in the unital case.



2009 ◽  
Vol 104 (1) ◽  
pp. 95 ◽  
Author(s):  
Marius Dadarlat ◽  
Wilhelm Winter

Let $\mathcal D$ and $A$ be unital and separable $C^{*}$-algebras; let $\mathcal D$ be strongly self-absorbing. It is known that any two unital ${}^*$-homomorphisms from $\mathcal D$ to $A \otimes \mathcal D$ are approximately unitarily equivalent. We show that, if $\mathcal D$ is also $K_{1}$-injective, they are even asymptotically unitarily equivalent. This in particular implies that any unital endomorphism of $\mathcal D$ is asymptotically inner. Moreover, the space of automorphisms of $\mathcal D$ is compactly-contractible (in the point-norm topology) in the sense that for any compact Hausdorff space $X$, the set of homotopy classes $[X,(\mathrm{Aut}(\mathcal D)]$ reduces to a point. The respective statement holds for the space of unital endomorphisms of $\mathcal D$. As an application, we give a description of the Kasparov group $KK(\mathcal D, A\otimes \mathcal D)$ in terms of $^*$-homomorphisms and asymptotic unitary equivalence. Along the way, we show that the Kasparov group $KK(\mathcal D, A\otimes \mathcal D)$ is isomorphic to $K_0(A\otimes \mathcal D)$.



2014 ◽  
Vol 57 (4) ◽  
pp. 853-869
Author(s):  
Qingfei Pan ◽  
Kun Wang

AbstractLet X be a compact Hausdorff space. In this paper, we give an example to show that there is u ∊⊗ C(X) Mn with det(u(x)) = 1 for all x ∊ X and u ~h 1 such that the C* exponential length of u (denoted by ~h cel(u)) cannot be controlled by π. Moreover, in simple inductive limit C*-algebras, similar examples also exist.



1995 ◽  
Vol 38 (2) ◽  
pp. 252-256
Author(s):  
Yong Zhong

AbstractWe prove that a positive unital linear mapping from a von Neumann algebra to a unital C*-algebra is a Jordan homomorphism if it maps invertible selfadjoint elements to invertible elements, and that for any compact Hausdorff space X, all positive unital linear mappings from C(X) into a unital C*-algebra that preserve the invertibility for self-adjoint elements are *-homomorphisms if and only if X is totally disconnected.



Order ◽  
2021 ◽  
Author(s):  
Péter Vrana

AbstractGiven a commutative semiring with a compatible preorder satisfying a version of the Archimedean property, the asymptotic spectrum, as introduced by Strassen (J. reine angew. Math. 1988), is an essentially unique compact Hausdorff space together with a map from the semiring to the ring of continuous functions. Strassen’s theorem characterizes an asymptotic relaxation of the preorder that asymptotically compares large powers of the elements up to a subexponential factor as the pointwise partial order of the corresponding functions, realizing the asymptotic spectrum as the space of monotone semiring homomorphisms to the nonnegative real numbers. Such preordered semirings have found applications in complexity theory and information theory. We prove a generalization of this theorem to preordered semirings that satisfy a weaker polynomial growth condition. This weaker hypothesis does not ensure in itself that nonnegative real-valued monotone homomorphisms characterize the (appropriate modification of the) asymptotic preorder. We find a sufficient condition as well as an equivalent condition for this to hold. Under these conditions the asymptotic spectrum is a locally compact Hausdorff space satisfying a similar universal property as in Strassen’s work.



2021 ◽  
Vol 71 (6) ◽  
pp. 1477-1486
Author(s):  
Vahid Ehsani ◽  
Fereshteh Sady

Abstract We investigate topological conditions on a compact Hausdorff space Y, such that any lattice isomorphism φ : C(X, I) → C(Y, I), where X is a compact Hausdorff space and I is the unit interval [0, 1], is continuous. It is shown that in either of cases that the set of G δ points of Y has a dense pseudocompact subset or Y does not contain the Stone-Čech compactification of ℕ, such a lattice isomorphism is a homeomorphism.



1994 ◽  
Vol 05 (02) ◽  
pp. 201-212 ◽  
Author(s):  
HERBERT KAMOWITZ ◽  
STEPHEN SCHEINBERG

Many commutative semisimple Banach algebras B including B = C (X), X compact, and B = L1 (G), G locally compact, have the property that every homomorphism from B into C1[0, 1] is compact. In this paper we consider this property for uniform algebras. Several examples of homomorphisms from somewhat complicated algebras of analytic functions to C1[0, 1] are shown to be compact. This, together with the fact that every homomorphism from the disc algebra and from the algebra H∞ (∆), ∆ = unit disc, to C1[0, 1] is compact, led to the conjecture that perhaps every homomorphism from a uniform algebra into C1[0, 1] is compact. The main result to which we devote the second half of this paper, is to construct a compact Hausdorff space X, a uniformly closed subalgebra [Formula: see text] of C (X), and an arc ϕ: [0, 1] → X such that the transformation T defined by Tf = f ◦ ϕ is a (bounded) homomorphism of [Formula: see text] into C1[0, 1] which is not compact.



2018 ◽  
Vol 242 (2) ◽  
pp. 187-205 ◽  
Author(s):  
Tomasz Kania ◽  
Martin Rmoutil


Sign in / Sign up

Export Citation Format

Share Document