Any Unitary Principal Series Representation of GL n over a p-Adic Field is Irreducible

1976 ◽  
Vol 54 (1) ◽  
pp. 376
Author(s):  
Roger Howe ◽  
Allan Silberger
Author(s):  
Fan Gao

Abstract For a unitary unramified genuine principal series representation of a covering group, we study the associated R-group. We prove a formula relating the R-group to the dimension of the Whittaker space for the irreducible constituents of such a principal series representation. Moreover, for certain saturated covers of a semisimple simply connected group, we also propose a simpler conjectural formula for such dimensions. This latter conjectural formula is verified in several cases, including covers of the symplectic groups.


2002 ◽  
Vol 54 (4) ◽  
pp. 828-865 ◽  
Author(s):  
Tomonori Moriyama

AbstractLet π be an irreducible generalized principal series representation of G = Sp(2, ℝ) induced from its Jacobi parabolic subgroup. We show that the space of algebraic intertwining operators from π to the representation induced from an irreducible admissible representation of SL(2, ℂ) in G is at most one dimensional. Spherical functions in the title are the images of K-finite vectors by this intertwining operator. We obtain an integral expression of Mellin-Barnes type for the radial part of our spherical function.


2017 ◽  
Vol 5 ◽  
Author(s):  
JUDITH LUDWIG

In this article we show that the quotient${\mathcal{M}}_{\infty }/B(\mathbb{Q}_{p})$of the Lubin–Tate space at infinite level${\mathcal{M}}_{\infty }$by the Borel subgroup of upper triangular matrices$B(\mathbb{Q}_{p})\subset \operatorname{GL}_{2}(\mathbb{Q}_{p})$exists as a perfectoid space. As an application we show that Scholze’s functor$H_{\acute{\text{e}}\text{t}}^{i}(\mathbb{P}_{\mathbb{C}_{p}}^{1},{\mathcal{F}}_{\unicode[STIX]{x1D70B}})$is concentrated in degree one whenever$\unicode[STIX]{x1D70B}$is an irreducible principal series representation or a twist of the Steinberg representation of$\operatorname{GL}_{2}(\mathbb{Q}_{p})$.


2009 ◽  
Vol 61 (2) ◽  
pp. 395-426 ◽  
Author(s):  
Tomonori Moriyama

Abstract. Let Π be a generic cuspidal automorphic representation of GSp(2) defined over a totally real algebraic number field k whose archimedean type is either a (limit of) large discrete series representation or a certain principal series representation. Through explicit computation of archimedean local zeta integrals, we prove the functional equation of tensor product L-functions L(s,Π × σ) for an arbitrary cuspidal automorphic representation σ of GL(2). We also give an application to the spinor L-function of Π.


2015 ◽  
Vol 16 (3) ◽  
pp. 609-671 ◽  
Author(s):  
Eyal Kaplan

We construct local and global metaplectic double covers of odd general spin groups, using the cover of Matsumoto of spin groups. Following Kazhdan and Patterson, a local exceptional representation is the unique irreducible quotient of a principal series representation, induced from a certain exceptional character. The global exceptional representation is obtained as the multi-residue of an Eisenstein series: it is an automorphic representation, and it decomposes as the restricted tensor product of local exceptional representations. As in the case of the small representation of$\mathit{SO}_{2n+1}$of Bump, Friedberg, and Ginzburg, exceptional representations enjoy the vanishing of a large class of twisted Jacquet modules (locally), or Fourier coefficients (globally). Consequently they are useful in many settings, including lifting problems and Rankin–Selberg integrals. We describe one application, to a calculation of a co-period integral.


2018 ◽  
Vol 2020 (24) ◽  
pp. 9988-10004 ◽  
Author(s):  
David Ben-Zvi ◽  
Sam Gunningham ◽  
Hendrik Orem

Abstract We present a criterion for establishing Morita equivalence of monoidal categories and apply it to the categorical representation theory of reductive groups $G$. We show that the “de Rham group algebra” $\mathcal D(G)$ (the monoidal category of $\mathcal D$-modules on $G$) is Morita equivalent to the universal Hecke category $\mathcal D({N}\backslash{G}/{N})$ and to its monodromic variant $\widetilde{\mathcal D}({B}\backslash{G}/{B})$. In other words, de Rham $G$-categories, that is, module categories for $\mathcal D(G)$, satisfy a “highest weight theorem”—they all appear in the decomposition of the universal principal series representation $\mathcal D(G/N)$ or in twisted $\mathcal D$-modules on the flag variety $\widetilde{\mathcal D}(G/B)$.


Sign in / Sign up

Export Citation Format

Share Document