Formal development of ordinal number theory

1955 ◽  
Vol 20 (2) ◽  
pp. 95-104
Author(s):  
Steven Orey

In this paper we shall develop a theory of ordinal numbers for the system ML, [6]. Since NF, [2], is a sub-system of ML one could let the ordinal arithmetic developed in [9] serve also as the ordinal arithmetic of ML. However, it was shown in [9] that the ordinal numbers of [9], NO, do not have all the usual properties of ordinal numbers and that theorems contradicting basic results of “intuitive ordinal arithmetic” can be proved.In particular it will be a theorem in our development of ordinal numbers that, for any ordinal number α, the set of all smaller ordinal numbers ordered by ≤ has ordinal number α; this result does not hold for the ordinals of [9] (see [9], XII.3.15). It will also be an easy consequence of our definition of ordinal number that proofs by induction over the ordinal numbers are permitted for arbitrary statements of ML; proofs by induction over NO can be carried through only for stratified statements with no unrestricted class variables.The class we shall take as the class of ordinal numbers, to be designated by ‘ORN’, will turn out to be a proper subclass of NO. This is because in ML there are two natural ways of defining the concept of well ordering. Sets which are well ordered in the sense of [9] we shall call weakly well ordered; sets which satisfy a certain more stringent condition will be called strongly well ordered. NO is the set of order types of weakly well ordered sets, while ORN is the class of order types of strongly well ordered sets. Basic properties of weakly and strongly well ordered sets are developed in Section 2.

1967 ◽  
Vol 32 (2) ◽  
pp. 145-161
Author(s):  
Mariko Yasugi

In [3], Takeuti developed the theory of ordinal numbers (ON) and constructed a model of Zermelo-Fraenkel set theory (ZF), using the primitive recursive relation ∈ of ordinal numbers. He proved:(1) If A is a ZF-provable formula, then its interpretation A0 in ON is ON-provable;(2) Let B be a sentence of ordinal number theory. Then B is a theorem of ON if and only if the natural translation B* of B in set theory is a theorem of ZF;(3) (V = L)° holds in ON.


1950 ◽  
Vol 15 (2) ◽  
pp. 113-129 ◽  
Author(s):  
J. Barkley Rosser ◽  
Hao Wang

In his doctor's thesis [1], Henkin has shown that if a formal logic is consistent, and sufficiently complex (for instance, if it is adequate for number theory), then it must admit a non-standard model. In particular, he showed that there must be a model in which that portion of the model which is supposed to represent the positive integers of the formal logic is not in fact isomorphic to the positive integers; indeed it is not even well ordered by what is supposed to be the relation of ≦.For the purposes of the present paper, we do not need a precise definition of what is meant by a standard model of a formal logic. The non-standard models which we shall discuss will be flagrantly non-standard, as for instance a model of the sort whose existence is proved by Henkin. It will suffice if we and our readers are in agreement that a model of a formal logic is not a standard model if either:(a) The relation in the model which represents the equality relation in the formal logic is not the equality relation for objects of the model.(b) That portion of the model which is supposed to represent the positive integers of the formal logic is not well ordered by the relation ≦.(c) That portion of the model which is supposed to represent the ordinal numbers of the formal logic is not well ordered by the relation ≦.


Author(s):  
C. St. J. A. Nash-Williams

AbstractLet Q be a quasi-ordered set, i.e. a set on which a reflexive and transitive relation ≤ is defined. If, for every finite sequence q1, q2, … of elements of Q, there exist i and j such that i < j and qi ≤ qj then we call Q well-quasi-ordered. For any ordinal number α the set of all ordinal numbers less than α is called an initial set. A function from an initial set into Q is called a transfinite sequence on Q. If ƒ: I1 → Q, g: I2 → Q are transfinite sequences on Q, the statement ƒ ≤ g means that there is a one-to-one order-preserving function ø:I1 → I2 such that f(α) ≤ g(ø(α)) for every α ∈ I1. Milner has conjectured in (3) that, if Q is well ordered, then any set of transfinite sequences on Q is well-quasi-ordered under the quasi-ordering just defined. In this paper, we define so-called ‘better-quasi-ordered sets’, which are well-quasi-ordered sets of a particularly ‘well-behaved’ kind, and we prove that any set of transfinite sequences on a better-quasi-ordered set is better-quasi-ordered. Milner's conjecture follows a fortiori, since every well ordered set is better-quasi-ordered and every better-quasi-ordered set is well-quasi-ordered.


2021 ◽  
pp. 1-12
Author(s):  
Simin Saidi Goraghani ◽  
Rajab Ali Borzooei ◽  
Sun Shin Ahn

In recent years, A. Di Nola et al. studied the notions of MV-semiring and semimodules and investigated related results [9, 10, 12, 26]. Now in this paper, by using an MV-semiring and an MV-algebra, we introduce the new definition of MV-semimodule, study basic properties and find some examples. Then we study A-ideals on MV-semimodules and Q-ideals on MV-semirings, and by using them, we study the quotient structures of MV-semimodule. Finally, we present the notions of prime A-ideal, torsion free MV-semimodule and annihilator on MV-semimodule and we study the relations among them.


2020 ◽  
pp. 1-23
Author(s):  
TUYEN TRUNG TRUONG

Abstract A strong submeasure on a compact metric space X is a sub-linear and bounded operator on the space of continuous functions on X. A strong submeasure is positive if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure is the supremum of a non-empty collection of measures whose masses are uniformly bounded from above. There are many natural examples of continuous maps of the form $f:U\rightarrow X$ , where X is a compact metric space and $U\subset X$ is an open-dense subset, where f cannot extend to a reasonable function on X. We can mention cases such as transcendental maps of $\mathbb {C}$ , meromorphic maps on compact complex varieties, or continuous self-maps $f:U\rightarrow U$ of a dense open subset $U\subset X$ where X is a compact metric space. For the aforementioned mentioned the use of measures is not sufficient to establish the basic properties of ergodic theory, such as the existence of invariant measures or a reasonable definition of measure-theoretic entropy and topological entropy. In this paper we show that strong submeasures can be used to completely resolve the issue and establish these basic properties. In another paper we apply strong submeasures to the intersection of positive closed $(1,1)$ currents on compact Kähler manifolds.


1962 ◽  
Vol 69 (5) ◽  
pp. 381-386 ◽  
Author(s):  
Maurice Sion ◽  
Richard Willmott

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 526
Author(s):  
Gautam Aishwarya ◽  
Mokshay Madiman

The analogues of Arimoto’s definition of conditional Rényi entropy and Rényi mutual information are explored for abstract alphabets. These quantities, although dependent on the reference measure, have some useful properties similar to those known in the discrete setting. In addition to laying out some such basic properties and the relations to Rényi divergences, the relationships between the families of mutual informations defined by Sibson, Augustin-Csiszár, and Lapidoth-Pfister, as well as the corresponding capacities, are explored.


1962 ◽  
Vol 69 (5) ◽  
pp. 381 ◽  
Author(s):  
Maurice Sion ◽  
Richard Willmott

Author(s):  
Cheng-Jie Zhou ◽  
Wei Yao

For a usual commutative quantale Q (does not necessarily have a unit), we propose a definition of Q-ordered sets by introducing a kind of self-adaptive self-reflexivity. We study their completeness and the related Q-modules of complete lattices. The main result is that, the complete Q-ordered sets and the Q-modules of complete lattices are categorical isomorphic.


2013 ◽  
Vol 21 (3) ◽  
pp. 185-191
Author(s):  
Keiko Narita ◽  
Noboru Endou ◽  
Yasunari Shidama

Summary In this article, we described basic properties of Riemann integral on functions from R into Real Banach Space. We proved mainly the linearity of integral operator about the integral of continuous functions on closed interval of the set of real numbers. These theorems were based on the article [10] and we referred to the former articles about Riemann integral. We applied definitions and theorems introduced in the article [9] and the article [11] to the proof. Using the definition of the article [10], we also proved some theorems on bounded functions.


Sign in / Sign up

Export Citation Format

Share Document