On a Definition of Ordinal Numbers

1962 ◽  
Vol 69 (5) ◽  
pp. 381-386 ◽  
Author(s):  
Maurice Sion ◽  
Richard Willmott
1962 ◽  
Vol 69 (5) ◽  
pp. 381 ◽  
Author(s):  
Maurice Sion ◽  
Richard Willmott

1977 ◽  
Vol 42 (3) ◽  
pp. 349-371 ◽  
Author(s):  
Zofia Adamowicz

We shall prove the following theorem:Theorem. For any finite lattice there is a model of ZF in which the partial ordering of the degrees of constructibility is isomorphic with the given lattice.Let M be a standard countable model of ZF satisfying V = L. Let K be the given finite lattice. We shall extend M by forcing.The paper is divided into two parts. The first part concerns the definition of the set of forcing conditions and some properties of this set expressible without the use of generic filters.We define first a representation of a lattice and then the set of conditions. In Lemmas 1, 2 we show that there are some canonical isomorphisms between some conditions and that a single condition has some canonical automorphisms.In Lemma 3 and Definition 7 we show some methods of defining conditions. We shall use those methods in the second part to define certain conditions with special properties.Lemma 4 gives a connection between the sets P and Pk (see Definitions 4 and 5). It is next employed in the second part in Lemma 10 in an essential way.Indeed, Lemma 10 is necessary for Lemma 13, which is the crucial point of the whole construction. Lemma 5 is also employed in Lemma 13 (exactly in its Corollary).The second part of the paper is devoted to the examination of the structure of degrees of constructibility in a generic model. First, we show that degrees of some “sections” of a generic real (Definition 9) form a lattice isomorphic with K. Secondly, we show that there are no other degrees in the generic model; this is the most difficult property to obtain by forcing. We prove, in two stages, that it holds in our generic models. We first show, by using special properties of the forcing conditions, that sets of ordinal numbers have no other degrees. Then we show that the degrees of sets of ordinals already determine the degrees of other sets.


1973 ◽  
Vol 38 (1) ◽  
pp. 18-28 ◽  
Author(s):  
John M. MacIntyre

This paper investigates the problem of extending the recursion theoretic construction of a minimal degree to the Kripke [2]-Platek [5] recursion theory on the ordinals less than an admissible ordinal α, a theory derived from the Takeuti [11] notion of a recursive function on the ordinal numbers. As noted in Sacks [7] when one generalizes the recursion theoretic definition of relative recursiveness to α-recursion theory for α > ω the two usual definitions give rise to two different notions of reducibility. We will show that whenever α is either a countable admissible or a regular cardinal of the constructible universe there is a subset of α whose degree is minimal for both notions of reducibility. The result is an excellent example of a theorem of ordinary recursion theory obtainable via two different constructions, one of which generalizes, the other of which does not. The construction which cannot be lifted to α-recursion theory is that of Spector [10]. We sketch the reasons for this in §3.


1955 ◽  
Vol 20 (2) ◽  
pp. 95-104
Author(s):  
Steven Orey

In this paper we shall develop a theory of ordinal numbers for the system ML, [6]. Since NF, [2], is a sub-system of ML one could let the ordinal arithmetic developed in [9] serve also as the ordinal arithmetic of ML. However, it was shown in [9] that the ordinal numbers of [9], NO, do not have all the usual properties of ordinal numbers and that theorems contradicting basic results of “intuitive ordinal arithmetic” can be proved.In particular it will be a theorem in our development of ordinal numbers that, for any ordinal number α, the set of all smaller ordinal numbers ordered by ≤ has ordinal number α; this result does not hold for the ordinals of [9] (see [9], XII.3.15). It will also be an easy consequence of our definition of ordinal number that proofs by induction over the ordinal numbers are permitted for arbitrary statements of ML; proofs by induction over NO can be carried through only for stratified statements with no unrestricted class variables.The class we shall take as the class of ordinal numbers, to be designated by ‘ORN’, will turn out to be a proper subclass of NO. This is because in ML there are two natural ways of defining the concept of well ordering. Sets which are well ordered in the sense of [9] we shall call weakly well ordered; sets which satisfy a certain more stringent condition will be called strongly well ordered. NO is the set of order types of weakly well ordered sets, while ORN is the class of order types of strongly well ordered sets. Basic properties of weakly and strongly well ordered sets are developed in Section 2.


1950 ◽  
Vol 15 (2) ◽  
pp. 113-129 ◽  
Author(s):  
J. Barkley Rosser ◽  
Hao Wang

In his doctor's thesis [1], Henkin has shown that if a formal logic is consistent, and sufficiently complex (for instance, if it is adequate for number theory), then it must admit a non-standard model. In particular, he showed that there must be a model in which that portion of the model which is supposed to represent the positive integers of the formal logic is not in fact isomorphic to the positive integers; indeed it is not even well ordered by what is supposed to be the relation of ≦.For the purposes of the present paper, we do not need a precise definition of what is meant by a standard model of a formal logic. The non-standard models which we shall discuss will be flagrantly non-standard, as for instance a model of the sort whose existence is proved by Henkin. It will suffice if we and our readers are in agreement that a model of a formal logic is not a standard model if either:(a) The relation in the model which represents the equality relation in the formal logic is not the equality relation for objects of the model.(b) That portion of the model which is supposed to represent the positive integers of the formal logic is not well ordered by the relation ≦.(c) That portion of the model which is supposed to represent the ordinal numbers of the formal logic is not well ordered by the relation ≦.


1960 ◽  
Vol 67 (1) ◽  
pp. 51 ◽  
Author(s):  
J. R. Isbell

1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


1979 ◽  
Vol 46 ◽  
pp. 125-149 ◽  
Author(s):  
David A. Allen

No paper of this nature should begin without a definition of symbiotic stars. It was Paul Merrill who, borrowing on his botanical background, coined the termsymbioticto describe apparently single stellar systems which combine the TiO absorption of M giants (temperature regime ≲ 3500 K) with He II emission (temperature regime ≳ 100,000 K). He and Milton Humason had in 1932 first drawn attention to three such stars: AX Per, CI Cyg and RW Hya. At the conclusion of the Mount Wilson Ha emission survey nearly a dozen had been identified, and Z And had become their type star. The numbers slowly grew, as much because the definition widened to include lower-excitation specimens as because new examples of the original type were found. In 1970 Wackerling listed 30; this was the last compendium of symbiotic stars published.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Sign in / Sign up

Export Citation Format

Share Document