The independence of a weak axiom of choice

1956 ◽  
Vol 21 (4) ◽  
pp. 350-366 ◽  
Author(s):  
Elliott Mendelson

1. The purpose of this paper is to show that, if the axioms of a system G of set theory are consistent, then it is impossible to prove from them the following weak form of the axiom of choice: (H1) For every denumerable set x of disjoint two-element sets, there is a set y, called a choice set for x, which contains exactly one element in common with each element of x. Among the axioms of the system G, we take, with minor modifications, Axioms A, B, C of Gödel [6]. Clearly, the independence of H1 implies that of all stronger propositions, including the general axiom of choice and the generalized continuum hypothesis.The proof depends upon ideas of Fraenkel and Mostowski, and proceeds in the following manner. Let a be a denumerable set of objects Δ0, Δ1, Δ2, …, the exact nature of which will be specified later. Let μj = {Δ2j, Δ2j+1} for each j, c = {μ0, μ1, μ2, …}, and b = [the sum set of a]. By transfinite induction, construct the class Vc which is the closure of b under the power-set operation. For each j, it is possible to define a 1–1 mapping of Vc onto itself with the following properties. The mapping preserves the ε-relation, or, more precisely, .

Author(s):  
Marcin Zieliński

The results of Zarzycki for the cardinality of the sets of all bijections, surjections, and injections are generalized to the case when the domains and codomains are infinite and different. The elementary proofs the cardinality of the sets of bijections and surjections are given within the framework of the Zermelo-Fraenkel set theory with the axiom of choice. The case of the set of all injections is considered in detail and more explicit an expression is obtained when the Generalized Continuum Hypothesis is assumed.


1989 ◽  
Vol 21 (62) ◽  
pp. 55-66
Author(s):  
José Alfredo Amor

The so called Generalized Continuum Hypothesis (GCH) is the sentence: "If A is an infinile set whose cardinal number is K and 2K denotes the cardinal number of the set P(A) of subsets of A (the power set of A), and K + denotes the succesor cardinal of K, then 2K = K +". The Continuum Hypothesis (CH) asserts the particular case K = o. It is clear that GCH implies CH. Another equivalent version of GCH, is the sentence: 'Any subset of the set of subsets of a given infinite set is or of cardinality less or equal than the cardinality of the given set, or of the cardinality of all the set of subsets". Gödel in 1939, and Cohen in 1963, settled the relative consistency of the Axiom of Choice (AC) and of its negation not-AC, respectively, with respecllo the Zermelo-Fraenkel set theory (ZF). On the other hand, Gödel in 1939, and Cohen in 1963 settled too, the relative consistency of GCH , CH and of its negations not-GCH, not-CH, respectively, with respect to the Zermelo-Fraenkel set theory with the Axiom of Choice (ZF + AC or ZFC). From these results we know that GCH and AC are undecidable sentences in ZF set theory and indeed, the most famous undecidable sentences in ZF; but, which is the relation between them? From the above results, in the theory ZF + AC is not demonstrated GCH; it is clear then that AC doesn't imply GCH in ZF theory, Bul does GCH implies AC in ZF theory? The answer is yes! or equivalently, there is no model of ZF +GCH + not-AC. A very easy proof can be given if we have an adecuate definition of cardinal number of a set, that doesn't depend of AC but depending from the Regularity Axiom, which asserls that aIl sets have a range, which is an ordinal number associated with its constructive complexity. We define the cardinal number of A, denoted |A|, as foIlows: |A|= { The least ordinal number equipotent with A, if A is well orderable The set of all sets equipotent with A and of minimum range, in other case. It is clear that without AC, may be not ordinal cardinals and all cardinals are ordinal cardinals if all sets are well orderable (AC). Now we formulate: GCH*: For all ordinal cardinal I<, 2K = I< + In the paper is demonstrated that this formulation GCH* is implied by the traditional one, and indeed equivalent to it. Lemma, The power set of any well orderable set is well orderable if and only if AC. This is one of the many equivalents of AC in ZF,due lo Rubin, 1960. Proposition. In ZF is a theorem: GCH* implies AC. Supose GCH*. Let A be a well orderable set; then |A| = K an ordinal cardinal, so A is equipotent with K and then P~A) is equipotent with P(K); therefore |P(A)I|= |P(K)| = 2K = K+. But then |P(A)|= K+ and P(A) 'is equipotent with K+ and K+ is an ordinal cardinal; therefore P(A) is well orderable with the well order induced by means of the bijection, from the well order of K+. Corolary: In ZF are theorems: GCH impIies AC and GCH is equivalent to GCH*. We see from this proof, that GCH asserts that the cardinal number of the power set of a well orderable set A is an ordinal, which is equivalent to AC, but GCH asserts also that that ordinal cardinal is |A|+ , the ordinal cardinal succesor of the ordinal cardinal of the well orderable set A.


1972 ◽  
Vol 37 (3) ◽  
pp. 569-571
Author(s):  
Andreas Blass

The method of inner models, used by Gödel to prove the (relative) consistency of the axiom of choice and the generalized continuum hypothesis [2], cannot be used to prove the (relative) consistency of any statement which contradicts the axiom of constructibility (V = L). A more precise statement of this well-known fact is:(*)For any formula θ(x) of the language of ZF, there is an axiom α of the theory ZF + V ≠ L such that the relativization α(θ) is not a theorem of ZF.On p. 108 of [1], Cohen gives a proof of (*) in ZF assuming the existence of a standard model of ZF, and he indicates that this assumption can be avoided. However, (*) is not a theorem of ZF (unless ZF is inconsistent), because (*) trivially implies the consistency of ZF. What assumptions are needed to prove (*)? We know that the existence of a standard model implies (*) which, in turn, implies the consistency of ZF. Is either implication reversible?From our main result, it will follow that, if the converse of the first implication is provable in ZF, then ZF has no standard model, and if the converse of the second implication is provable in ZF, then so is the inconsistency of ZF. Thus, it is quite improbable that either converse is provable in ZF.


1994 ◽  
Vol 59 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Lorenz Halbeisen ◽  
Saharon Shelah

AbstractIn this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of choice). In ZFC (set theory with AC), given any cardinals and , either ≤ or ≤ . However, in ZF this is no longer so. For a given infinite set A consider seq1-1(A), the set of all sequences of A without repetition. We compare |seq1-1(A)|, the cardinality of this set, to ||, the cardinality of the power set of A. What is provable about these two cardinals in ZF? The main result of this paper is that ZF ⊢ ∀A(| seq1-1(A)| ≠ ||), and we show that this is the best possible result. Furthermore, it is provable in ZF that if B is an infinite set, then | fin(B)| < | (B*)| even though the existence for some infinite set B* of a function ƒ from fin(B*) onto (B*) is consistent with ZF.


1973 ◽  
Vol 8 (3) ◽  
pp. 413-421 ◽  
Author(s):  
G.P. Monro

One problem in set theory without the axiom of choice is to find a reasonable way of estimating the size of a non-well-orderable set; in this paper we present evidence which suggests that this may be very hard. Given an arbitrary fixed aleph κ we construct a model of set theory which contains a set X such that if Y ⊆ X then either Y or X - Y is finite, but such that κ can be mapped into S(S(S(X))). So in one sense X is large and in another X is one of the smallest possible infinite sets. (Here S(X) is the power set of X.)


2020 ◽  
Vol 30 (1) ◽  
pp. 447-457
Author(s):  
Michael Rathjen

Abstract While power Kripke–Platek set theory, ${\textbf{KP}}({\mathcal{P}})$, shares many properties with ordinary Kripke–Platek set theory, ${\textbf{KP}}$, in several ways it behaves quite differently from ${\textbf{KP}}$. This is perhaps most strikingly demonstrated by a result, due to Mathias, to the effect that adding the axiom of constructibility to ${\textbf{KP}}({\mathcal{P}})$ gives rise to a much stronger theory, whereas in the case of ${\textbf{KP}}$, the constructible hierarchy provides an inner model, so that ${\textbf{KP}}$ and ${\textbf{KP}}+V=L$ have the same strength. This paper will be concerned with the relationship between ${\textbf{KP}}({\mathcal{P}})$ and ${\textbf{KP}}({\mathcal{P}})$ plus the axiom of choice or even the global axiom of choice, $\textbf{AC}_{\tiny {global}}$. Since $L$ is the standard vehicle to furnish a model in which this axiom holds, the usual argument for demonstrating that the addition of ${\textbf{AC}}$ or $\textbf{AC}_{\tiny {global}}$ to ${\textbf{KP}}({\mathcal{P}})$ does not increase proof-theoretic strength does not apply in any obvious way. Among other tools, the paper uses techniques from ordinal analysis to show that ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ has the same strength as ${\textbf{KP}}({\mathcal{P}})$, thereby answering a question of Mathias. Moreover, it is shown that ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ is conservative over ${\textbf{KP}}({\mathcal{P}})$ for $\varPi ^1_4$ statements of analysis. The method of ordinal analysis for theories with power set was developed in an earlier paper. The technique allows one to compute witnessing information from infinitary proofs, providing bounds for the transfinite iterations of the power set operation that are provable in a theory. As the theory ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ provides a very useful tool for defining models and realizability models of other theories that are hard to construct without access to a uniform selection mechanism, it is desirable to determine its exact proof-theoretic strength. This knowledge can for instance be used to determine the strength of Feferman’s operational set theory with power set operation as well as constructive Zermelo–Fraenkel set theory with the axiom of choice.


Sign in / Sign up

Export Citation Format

Share Document