The Expected Number of Components Under a Random Mapping Function

1954 ◽  
Vol 61 (6) ◽  
pp. 392 ◽  
Author(s):  
Martin D. Kruskal
1991 ◽  
Vol 23 (3) ◽  
pp. 437-455 ◽  
Author(s):  
P. J. Donnelly ◽  
W. J. Ewens ◽  
S. Padmadisastra

A random mapping partitions the set {1, 2, ···, m} into components, where i and j are in the same component if some functional iterate of i equals some functional iterate of j. We consider various functionals of these partitions and of samples from it, including the number of components of ‘small' size and of size O(m) as m → ∞the size of the largest component, the number of components, and various symmetric functionals of the normalized component sizes. In many cases exact results, while available, are uniformative, and we consider various approximations. Numerical and simulation results are also presented. A central tool for many calculations is the ‘frequency spectrum', both exact and asymptotic.


1984 ◽  
Vol 21 (1) ◽  
pp. 186-191 ◽  
Author(s):  
Jerzy Jaworski

A random mapping (T,Pj) of a finite set V into itself is studied. We give a new proof of the fundamental lemma of [6]. Our method leads to the derivation of several results which cannot be deduced from [6]. In particular we determine the distribution of the number of components, cyclical points and ancestors of a given point.


2002 ◽  
Vol 12 (06) ◽  
pp. 445-453 ◽  
Author(s):  
PROSENJIT BOSE ◽  
LUC DEVROYE ◽  
WILLIAM EVANS

Two recent methods have increased hopes of finding a polynomial time solution to the problem of computing the minimum weight triangulation of a set S of n points in the plane. Both involve computing what was believed to be a connected or nearly connected subgraph of the minimum weight triangulation, and then completing the triangulation optimally. The first method uses the light graph of S as its initial subgraph. The second method uses the LMT-skeleton of S. Both methods rely, for their polynomial time bound, on the initial subgraphs having only a constant number of components. Experiments performed by the authors of these methods seemed to confirm that randomly chosen point sets displayed this desired property. We show that there exist point sets where the number of components is linear in n. In fact, the expected number of components in either graph on a randomly chosen point set is linear in n, and the probability of the number of components exceeding some constant times n tends to one.


1984 ◽  
Vol 21 (01) ◽  
pp. 186-191
Author(s):  
Jerzy Jaworski

A random mapping (T,Pj ) of a finite set V into itself is studied. We give a new proof of the fundamental lemma of [6]. Our method leads to the derivation of several results which cannot be deduced from [6]. In particular we determine the distribution of the number of components, cyclical points and ancestors of a given point.


1993 ◽  
Vol 30 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Brian J. English

A simple identity for the incomplete factorial of sums of zero-one variables is exploited to provide the factorial moments of the number of components and the number of cyclical elements of the random mapping (T, {pi}) considered by Ross (1981).


Sign in / Sign up

Export Citation Format

Share Document