mapping function
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 170)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Peng Yu ◽  
Youyu Zhu

Phrase identification plays an important role in medical English machine translation. However, the phrases in medical English are complicated in internal structure and semantic relationship, which hinders the identification of machine translation and thus affects the accuracy of translation results. With the aim of breaking through the bottleneck of machine translation in medical field, this paper designed a machine translation model based on the optimized generalized likelihood ratio (GLR) algorithm. Specifically, the model in question established a medical phrase corpus of 250,000 English and 280,000 Chinese words, applied the symbol mapping function to the identification of the phrase’s part of speech, and employed the syntactic function of the multioutput analysis table structure to correct the structural ambiguity in the identification of the part of speech, eventually obtaining the final identification result. According to the comprehensive verification, the translation model employing the optimized GLR algorithm was seen to improve the speed, accuracy, and update performance of machine translation and was seen to be more suitable for machine translation in medical field, therefore providing a new perspective for the employment of medical machine translation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Muna Al-Razgan ◽  
Taha Alfakih ◽  
Mohammad Mehedi Hassan

The emerging technology of mobile cloud is introduced to overcome the constraints of mobile devices. We can achieve that by offloading resource intensive applications to remote cloud-based data centers. For the remote computing solution, mobile devices (MDs) experience higher response time and delay of the network, which negatively affects the real-time mobile user applications. In this study, we proposed a model to evaluate the efficiency of the close-end network computation offloading in MEC. This model helps in choosing the adjacent edge server from the surrounding edge servers. This helps to minimize the latency and increase the response time. To do so, we use a decision rule based Heuristic Virtual Value (HVV). The HVV is a mapping function based on the features of the edge server like the workload and performance. Furthermore, we propose availability of a virtual machine resource algorithm (AVM) based on the availability of VM in edge cloud servers for efficient resource allocation and task scheduling. The results of experiment simulation show that the proposed model can meet the response time requirements of different real-time services, improve the performance, and minimize the consumption of MD energy and the resource utilization.


2021 ◽  
Author(s):  
Haibin Di ◽  
Chakib Kada Kloucha ◽  
Cen Li ◽  
Aria Abubakar ◽  
Zhun Li ◽  
...  

Abstract Delineating seismic stratigraphic features and depositional facies is of importance to successful reservoir mapping and identification in the subsurface. Robust seismic stratigraphy interpretation is confronted with two major challenges. The first one is to maximally automate the process particularly with the increasing size of seismic data and complexity of target stratigraphies, while the second challenge is to efficiently incorporate available structures into stratigraphy model building. Machine learning, particularly convolutional neural network (CNN), has been introduced into assisting seismic stratigraphy interpretation through supervised learning. However, the small amount of available expert labels greatly restricts the performance of such supervised CNN. Moreover, most of the exiting CNN implementations are based on only amplitude, which fails to use necessary structural information such as faults for constraining the machine learning. To resolve both challenges, this paper presents a semi-supervised learning workflow for fault-guided seismic stratigraphy interpretation, which consists of two components. The first component is seismic feature engineering (SFE), which aims at learning the provided seismic and fault data through a unsupervised convolutional autoencoder (CAE), while the second one is stratigraphy model building (SMB), which aims at building an optimal mapping function between the features extracted from the SFE CAE and the target stratigraphic labels provided by an experienced interpreter through a supervised CNN. Both components are connected by embedding the encoder of the SFE CAE into the SMB CNN, which forces the SMB learning based on these features commonly existing in the entire study area instead of those only at the limited training data; correspondingly, the risk of overfitting is greatly eliminated. More innovatively, the fault constraint is introduced by customizing the SMB CNN of two output branches, with one to match the target stratigraphies and the other to reconstruct the input fault, so that the fault continues contributing to the process of SMB learning. The performance of such fault-guided seismic stratigraphy interpretation is validated by an application to a real seismic dataset, and the machine prediction not only matches the manual interpretation accurately but also clearly illustrates the depositional process in the study area.


Author(s):  
Omid Elmi ◽  
Mohammad J. Tourian ◽  
András Bárdossy ◽  
Nico Sneeuw

2021 ◽  
Vol 13 (23) ◽  
pp. 4758
Author(s):  
Mengjie Wu ◽  
Peng Guo ◽  
Wei Zhou ◽  
Junchen Xue ◽  
Xingyuan Han ◽  
...  

The mapping function is crucial for the conversion of slant total electron content (TEC) to vertical TEC for low Earth orbit (LEO) satellite-based observations. Instead of collapsing the ionosphere into one single shell in commonly used mapping models, we defined a new mapping function assuming the vertical ionospheric distribution as an exponential profiler with one simple parameter: the plasmaspheric scale height in the zenith direction of LEO satellites. The scale height obtained by an empirical model introduces spatial and temporal variances into the mapping function. The performance of the new method is compared with the mapping function F&K by simulating experiments based on the global core plasma model (GCPM), and it is discussed along with the latitude, seasons, local time, as well as solar activity conditions and varying LEO orbit altitudes. The assessment indicates that the new mapping function has a comparable or better performance than the F&K mapping model, especially on the TEC conversion of low elevation angles.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2208
Author(s):  
Kunyi Jiang ◽  
Lei Mao ◽  
Yumin Su ◽  
Yuxin Zheng

This paper is devoted to the problem of prescribed performance trajectory tracking control for symmetrical underactuated unmanned surface vessels (USVs) in the presence of model uncertainties and input quantization. By combining backstepping filter mechanisms and adaptive algorithms, two robust control architectures are investigated for surge motion and yaw motion. To guarantee the prespecified performance requirements for position tracking control, the constrained error dynamics are transformed to unconstrained ones by virtue of a tangent-type nonlinear mapping function. On the other hand, the inaccurate model can be identified through radial basis neural networks (RBFNNs), where the minimum learning parameter (MLP) algorithm is employed with a low computational complexity. Furthermore, quantization errors can be effectively reduced even when the parameters of the quantizer remain unavailable to designers. Finally, the effectiveness of the proposed controllers is verified via theoretical analyses and numerical simulations.


2021 ◽  
pp. 1-11
Author(s):  
Lin Tang

In order to overcome the problems of high data storage occupancy and long encryption time in traditional integrity protection methods for trusted data of IOT node, this paper proposes an integrity protection method for trusted data of IOT node based on transfer learning. Through the transfer learning algorithm, the data characteristics of the IOT node is obtained, the feature mapping function in the common characteristics of the node data is set to complete the classification of the complete data and incomplete data in the IOT nodes. The data of the IOT nodes is input into the data processing database to verify its security, eliminate the node data with low security, and integrate the security data and the complete data. On this basis, homomorphic encryption algorithm is used to encrypt the trusted data of IOT nodes, and embedded processor is added to the IOT to realize data integrity protection. The experimental results show that: after using the proposed method to protect the integrity of trusted data of IOT nodes, the data storage occupancy rate is only about 3.5%, the shortest time-consuming of trusted data encryption of IOT nodes is about 3 s, and the work efficiency is high.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qinrui Yang ◽  
Jinglei Qian ◽  
Chengchen Shao ◽  
Yining Yao ◽  
Zhihan Zhou ◽  
...  

The application of X-chromosomal short tandem repeats (X-STRs) has been recognized as a powerful tool in complex kinship testing. To support further development of X-STR analysis in forensic use, we identified nine novel X-STRs, which could be clustered into three linkage groups on Xp21.1, Xq21.31, and Xq23. A multiplex PCR system was built based on the electrophoresis. A total of 198 unrelated Shanghai Han samples along with 168 samples from 43 families was collected to investigate the genetic polymorphism and forensic parameters of the nine loci. Allele numbers ranged from 5 to 12, and amplicon sizes ranged from 146 to 477 bp. The multiplex showed high values for the combined power of discrimination (0.99997977 in males and 0.99999999 in females) and combined mean exclusion chances (0.99997918 and 0.99997821 in trios, 0.99984939 in duos, and 0.99984200 in deficiency cases). The linkage between all pairs of loci was estimated via Kosambi mapping function and linkage disequilibrium test, and further investigated through the family study. The data from 43 families strongly demonstrated an independent transmission between LGs and a tight linkage among loci within the same LG. All these results support that the newly described X-STRs and the multiplex system are highly promising for further forensic use.


GPS Solutions ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Wen Li ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Ang Liu ◽  
Kai Zhou ◽  
...  

AbstractTotal Electron Content (TEC) modeling is critical for Global Navigation Satellite System (GNSS) users to mitigate ionospheric delay errors. The mapping function is usually used for Vertical TEC ionospheric correction models for slant and vertical TEC conversion. But the mapping function cannot characterize TEC variation in different azimuths between the user and satellites. The ionospheric modeling error resulting from the mapping function tends to be bigger in middle and low latitudes. Therefore, a new algorithm for ionospheric Slant TEC (STEC) modeling with Satellite-based Ionospheric Model (SIM) is proposed in this contribution. Validation tests are carried out with GNSS observation data from the Crustal Movement Observation Network of China during different solar activities and in different seasons. The performance of SIM is compared with that of several commonly-used Global Ionospheric Map (GIM) and Regional Ionospheric Map (RIM) products. The results show that the STEC bias and STD of SIM are within 1.0 TECU and about 2.0 TECU, respectively, and SIM can correct over 90% STEC RMS errors, outperforming the GIM and RIM products. Consequently, the SIM algorithm can be a new option for high-accuracy ionospheric delay correction in regional and local GNSS networks.


Sign in / Sign up

Export Citation Format

Share Document