Prime-Power Abelian Groups Generated by a Set of Conjugates Under a Special Automorphism

1933 ◽  
Vol 55 (1/4) ◽  
pp. 553
Author(s):  
H. R. Brahana

1979 ◽  
Vol 22 (1) ◽  
pp. 17-21 ◽  
Author(s):  
A. D. Sands

Keller (6) considered a generalisation of a problem of Minkowski (7) concerning the filling of Rn by congruent cubes. Hajós (4) reduced Minkowski's conjecture to a problem concerning the factorization of finite abelian groups and then solved this problem. In a similar manner Hajós (5) reduced Keller's conjecture to a problem in the factorization of finite abelian groups, but this problem remains unsolved, in general. It occurs also as Problem 80 in Fuchs (3). Seitz (10) has obtained a solution for cyclic groups of prime power order. In this paper we present a solution for cyclic groups whose order is the product of two prime powers.



Author(s):  
Roland Schmidt

AbstractWe solve the following problem which was posed by Barnes in 1962. For which abelian groups G and H of the same prime power order is it possible to embed the subgroup lattice of G in that of H? It follows from Barnes' results and a theorem of Herrmann and Huhn that if there exists such an embedding and G contains three independent elements of order p2, then G and H are isomorphic. This reduces the problem to the case that G is the direct product of cyclic p-groups only two of which have order larger than p. We determine all groups H for which the desired embedding exists.



Author(s):  
Nikolaj Glazunov

An efficient p-adic method and the structure of an algorithm for computing the sums of characters of finite abelian groups are presented. The method and algorithm are based on the A.G. Postnikov summation method of characters modulo a prime power and its developments. A brief survey of the theory of characters of finite abelian groups, p-adic arithmetic and analysis is presented. Questions of the efficiency of p-adic methods are discussed. Moreover, we present results of computation of other types of sums of characters (Kloosterman sums), which are connecting with Artin-Schreier coverings over prime finite fields. The corresponding method and algorithm are based on the development of another method by A.G. Postnikov. Examples of computation of sums of characters are given.





1972 ◽  
Vol 14 (2) ◽  
pp. 129-154 ◽  
Author(s):  
M. S. Brooks

Let Un denote the variety of abelian groups of exponent dividing n, and let p be an arbitrary prime. In this paper all non-nilpotent, join-ireducible subvarieties of the product variety UpUp2 are determined. The proper subvarieties of this kind in fact form an infinite ascending chain …, and an arbitrary proper subvariety B of UpUp2 is either nilpotent or a join , where L is nilpotent and k is uniquely determined by B.



2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Rosita Zainal ◽  
Nor Muhainiah Mohd Ali ◽  
Nor Haniza Sarmin ◽  
Samad Rashid

The homological functors of a group were first introduced in homotopy theory. Some of the homological functors including the nonabelian tensor square and the Schur multiplier of abelian groups of prime power order are determined in this paper. The nonabelian tensor square of a group G introduced by Brown and Loday in 1987 is a special case of the nonabelian tensor product. Meanwhile, the Schur multiplier of G is the second cohomology with integer coefficients is named after Issai Schur. The aims of this paper are to determine the nonabelian tensor square and the Schur multiplier of abelian groups of order p5, where p is an odd prime



1972 ◽  
Vol 7 (2) ◽  
pp. 233-249 ◽  
Author(s):  
Jennifer Wallis ◽  
Albert Leon Whiteman

The concepts of circulant and backcirculant matrices are generalized to obtain incidence matrices of subsets of finite additive abelian groups. These results are then used to show the existence of skew-Hadamard matrices of order 8(4f+1) when f is odd and 8f + 1 is a prime power. This shows the existence of skew-Hadamard matrices of orders 296, 592, 1184, 1640, 2280, 2368 which were previously unknown.A construction is given for regular symmetric Hadamard matrices with constant diagonal of order 4(2m + 1)2 when a symmetric conference matrix of order 4m + 2 exists and there are Szekeres difference sets, X and Y, of size m satisfying x є X ⇒ −xє X, y є Y ⇒ −y єY.



1980 ◽  
Vol 97 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Gerhard Pazderski
Keyword(s):  


1923 ◽  
Vol 45 (4) ◽  
pp. 223 ◽  
Author(s):  
Harry Albert Bender


Sign in / Sign up

Export Citation Format

Share Document