Sylow Subgroups in the Group of Isomorphisms of Prime Power Abelian Groups

1923 ◽  
Vol 45 (4) ◽  
pp. 223 ◽  
Author(s):  
Harry Albert Bender

1979 ◽  
Vol 22 (1) ◽  
pp. 17-21 ◽  
Author(s):  
A. D. Sands

Keller (6) considered a generalisation of a problem of Minkowski (7) concerning the filling of Rn by congruent cubes. Hajós (4) reduced Minkowski's conjecture to a problem concerning the factorization of finite abelian groups and then solved this problem. In a similar manner Hajós (5) reduced Keller's conjecture to a problem in the factorization of finite abelian groups, but this problem remains unsolved, in general. It occurs also as Problem 80 in Fuchs (3). Seitz (10) has obtained a solution for cyclic groups of prime power order. In this paper we present a solution for cyclic groups whose order is the product of two prime powers.



10.37236/3123 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Edward Dobson

We give a necessary condition to reduce the Cayley isomorphism problem for Cayley objects of a nilpotent or abelian group $G$ whose order satisfies certain arithmetic properties to the Cayley isomorphism problem of Cayley objects of the Sylow subgroups of $G$ in the case of nilpotent groups, and in the case of abelian groups to certain natural subgroups. As an application of this result, we show that ${\mathbb Z}_q\times{\mathbb Z}_p^2\times{\mathbb Z}_m$ is a CI-group with respect to digraphs, where $q$ and $p$ are primes with $p^2 < q$ and $m$ is a square-free integer satisfying certain arithmetic conditions (but there are no other restrictions on $q$ and $p$).



Author(s):  
Roland Schmidt

AbstractWe solve the following problem which was posed by Barnes in 1962. For which abelian groups G and H of the same prime power order is it possible to embed the subgroup lattice of G in that of H? It follows from Barnes' results and a theorem of Herrmann and Huhn that if there exists such an embedding and G contains three independent elements of order p2, then G and H are isomorphic. This reduces the problem to the case that G is the direct product of cyclic p-groups only two of which have order larger than p. We determine all groups H for which the desired embedding exists.



Author(s):  
Nikolaj Glazunov

An efficient p-adic method and the structure of an algorithm for computing the sums of characters of finite abelian groups are presented. The method and algorithm are based on the A.G. Postnikov summation method of characters modulo a prime power and its developments. A brief survey of the theory of characters of finite abelian groups, p-adic arithmetic and analysis is presented. Questions of the efficiency of p-adic methods are discussed. Moreover, we present results of computation of other types of sums of characters (Kloosterman sums), which are connecting with Artin-Schreier coverings over prime finite fields. The corresponding method and algorithm are based on the development of another method by A.G. Postnikov. Examples of computation of sums of characters are given.





1972 ◽  
Vol 14 (2) ◽  
pp. 129-154 ◽  
Author(s):  
M. S. Brooks

Let Un denote the variety of abelian groups of exponent dividing n, and let p be an arbitrary prime. In this paper all non-nilpotent, join-ireducible subvarieties of the product variety UpUp2 are determined. The proper subvarieties of this kind in fact form an infinite ascending chain …, and an arbitrary proper subvariety B of UpUp2 is either nilpotent or a join , where L is nilpotent and k is uniquely determined by B.



2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Rosita Zainal ◽  
Nor Muhainiah Mohd Ali ◽  
Nor Haniza Sarmin ◽  
Samad Rashid

The homological functors of a group were first introduced in homotopy theory. Some of the homological functors including the nonabelian tensor square and the Schur multiplier of abelian groups of prime power order are determined in this paper. The nonabelian tensor square of a group G introduced by Brown and Loday in 1987 is a special case of the nonabelian tensor product. Meanwhile, the Schur multiplier of G is the second cohomology with integer coefficients is named after Issai Schur. The aims of this paper are to determine the nonabelian tensor square and the Schur multiplier of abelian groups of order p5, where p is an odd prime



2002 ◽  
Vol 72 (2) ◽  
pp. 173-180 ◽  
Author(s):  
R. Quackenbush ◽  
C. S. Szabó

AbstractIt is shown that no finite group containing a non-abelian nilpotent subgroup is dualizable. This is in contrast to the known result that every finite abelian group is dualizable (as part of the Pontryagin duality for all abelian groups) and to the result of the authors in a companion article that every finite group with cyclic Sylow subgroups is dualizable.





Sign in / Sign up

Export Citation Format

Share Document