Bayesian Analysis of Quantitative Trait Locus Data Using Reversible Jump Markov Chain Monte Carlo

Biometrics ◽  
1998 ◽  
Vol 54 (4) ◽  
pp. 1334 ◽  
Author(s):  
D. A. Stephens ◽  
R. D. Fisch
2000 ◽  
Vol 75 (2) ◽  
pp. 231-241 ◽  
Author(s):  
M. C. A. M. BINK ◽  
L. L. G. JANSS ◽  
R. L. QUAAS

A Bayesian approach is presented for mapping a quantitative trait locus (QTL) using the ‘Fernando and Grossman’ multivariate Normal approximation to QTL inheritance. For this model, a Bayesian implementation that includes QTL position is problematic because standard Markov chain Monte Carlo (MCMC) algorithms do not mix, i.e. the QTL position gets stuck in one marker interval. This is because of the dependence of the covariance structure for the QTL effects on the adjacent markers and may be typical of the ‘Fernando and Grossman’ model. A relatively new MCMC technique, simulated tempering, allows mixing and so makes possible inferences about QTL position based on marginal posterior probabilities. The model was implemented for estimating variance ratios and QTL position using a continuous grid of allowed positions and was applied to simulated data of a standard granddaughter design. The results showed a smooth mixing of QTL position after implementation of the simulated tempering sampler. In this implementation, map distance between QTL and its flanking markers was artificially stretched to reduce the dependence of markers and covariance. The method generalizes easily to more complicated applications and can ultimately contribute to QTL mapping in complex, heterogeneous, human, animal or plant populations.


Genetics ◽  
1997 ◽  
Vol 146 (2) ◽  
pp. 735-743 ◽  
Author(s):  
Pekka Uimari ◽  
Ina Hoeschele

A Bayesian method for mapping linked quantitative trait loci (QTL) using multiple linked genetic markers is presented. Parameter estimation and hypothesis testing was implemented via Markov chain Monte Carlo (MCMC) algorithms. Parameters included were allele frequencies and substitution effects for two biallelic QTL, map positions of the QTL and markers, allele frequencies of the markers, and polygenic and residual variances. Missing data were polygenic effects and multi-locus marker-QTL genotypes. Three different MCMC schemes for testing the presence of a single or two linked QTL on the chromosome were compared. The first approach includes a model indicator variable representing two unlinked QTL affecting the trait, one linked and one unlinked QTL, or both QTL linked with the markers. The second approach incorporates an indicator variable for each QTL into the model for phenotype, allowing or not allowing for a substitution effect of a QTL on phenotype, and the third approach is based on model determination by reversible jump MCMC. Methods were evaluated empirically by analyzing simulated granddaughter designs. All methods identified correctly a second, linked QTL and did not reject the one-QTL model when there was only a single QTL and no additional or an unlinked QTL.


Sign in / Sign up

Export Citation Format

Share Document