Quasi-o-minimal structures

2000 ◽  
Vol 65 (3) ◽  
pp. 1115-1132 ◽  
Author(s):  
Oleg Belegradek ◽  
Ya'acov Peterzil ◽  
Frank Wagner

AbstractA structure (M, <, …) is called quasi-o-minimal if in any structure elementarily equivalent to it the definable subsets are exactly the Boolean combinations of 0-definable subsets and intervals. We give a series of natural examples of quasi-o-minimal structures which are not o-minimal; one of them is the ordered group of integers. We develop a technique to investigate quasi-o-minimality and use it to study quasi-o-minimal ordered groups (possibly with extra structure). Main results: any quasi-o-minimal ordered group is abelian; any quasi-o-minimal ordered ring is a real closed field, or has zero multiplication; every quasi-o-minimal divisible ordered group is o-minimal; every quasi-o-minimal archimedian densely ordered group is divisible. We show that a counterpart of quasi-o-minimality in stability theory is the notion of theory of U-rank 1.


1995 ◽  
Vol 60 (3) ◽  
pp. 817-831 ◽  
Author(s):  
Michael C. Laskowski ◽  
Charles Steinhorn

AbstractWe study o-minimal expansions of Archimedean totally ordered groups. We first prove that any such expansion must be elementarily embeddable via a unique (provided some nonzero element is 0-definable) elementary embedding into a unique o-minimal expansion of the additive ordered group of real numbers . We then show that a definable function in an o-minimal expansion of enjoys good differentiability properties and use this to prove that an Archimedean real closed field is definable in any nonsemilinear expansion of . Combining these results, we obtain several restrictions on possible o-minimal expansions of arbitrary Archimedean ordered groups and in particular of the rational ordered group.



2001 ◽  
Vol 66 (3) ◽  
pp. 1231-1258 ◽  
Author(s):  
Philip Ehrlich

Introduction. In his monograph On Numbers and Games [7], J. H. Conway introduced a real-closed field containing the reals and the ordinals as well as a great many other numbers including ω, ω, /2, 1/ω, and ω − π to name only a few. Indeed, this particular real-closed field, which Conway calls No, is so remarkably inclusive that, subject to the proviso that numbers—construed here as members of ordered “number” fields—be individually definable in terms of sets of von Neumann-Bernays-Gödel set theory with Global Choice, henceforth NBG [cf. 21, Ch. 4], it may be said to contain “All Numbers Great and Small.” In this respect, No bears much the same relation to ordered fields that the system of real numbers bears to Archimedean ordered fields. This can be made precise by saying that whereas the ordered field of reals is (up to isomorphism) the unique homogeneous universal Archimedean ordered field, No is (up to isomorphism) the unique homogeneous universal orderedfield [14]; also see [10], [12], [13].However, in addition to its distinguished structure as an ordered field, No has a rich hierarchical structure that (implicitly) emerges from the recursive clauses in terms of which it is defined. This algebraico-tree-theoretic structure, or simplicity hierarchy, as we have called it [15], depends upon No's (implicit) structure as a lexicographically ordered binary tree and arises from the fact that the sums and products of any two members of the tree are the simplest possible elements of the tree consistent with No's structure as an ordered group and an ordered field, respectively, it being understood that x is simpler than y just in case x is a predecessor of y in the tree.



1994 ◽  
Vol 1 (3) ◽  
pp. 277-286
Author(s):  
G. Khimshiashvili

Abstract It is shown that the cardinality of a finite semi-algebraic subset over a real closed field can be computed in terms of signatures of effectively constructed quadratic forms.



2009 ◽  
Vol 52 (2) ◽  
pp. 224-236
Author(s):  
Riccardo Ghiloni

AbstractLetRbe a real closed field, letX⊂Rnbe an irreducible real algebraic set and letZbe an algebraic subset ofXof codimension ≥ 2. Dubois and Efroymson proved the existence of an irreducible algebraic subset ofXof codimension 1 containingZ. We improve this dimension theorem as follows. Indicate by μ the minimum integer such that the ideal of polynomials inR[x1, … ,xn] vanishing onZcan be generated by polynomials of degree ≤ μ. We prove the following two results: (1) There exists a polynomialP∈R[x1, … ,xn] of degree≤ μ+1 such thatX∩P–1(0) is an irreducible algebraic subset ofXof codimension 1 containingZ. (2) LetFbe a polynomial inR[x1, … ,xn] of degreedvanishing onZ. Suppose there exists a nonsingular pointxofXsuch thatF(x) = 0 and the differential atxof the restriction ofFtoXis nonzero. Then there exists a polynomialG∈R[x1, … ,xn] of degree ≤ max﹛d, μ + 1﹜ such that, for eacht∈ (–1, 1) \ ﹛0﹜, the set ﹛x∈X|F(x) +tG(x) = 0﹜ is an irreducible algebraic subset ofXof codimension 1 containingZ. Result (1) and a slightly different version of result (2) are valid over any algebraically closed field also.



1978 ◽  
Vol 43 (1) ◽  
pp. 82-91 ◽  
Author(s):  
Michael F. Singer

In this paper, we show that the theory of ordered differential fields has a model completion. We also show that any real differential field, finitely generated over the rational numbers, is isomorphic to some field of real meromorphic functions. In the last section of this paper, we combine these two results and discuss the problem of deciding if a system of differential equations has real analytic solutions. The author wishes to thank G. Stengle for some stimulating and helpful conversations and for drawing our attention to fields of real meromorphic functions.§ 1. Real and ordered fields. A real field is a field in which −1 is not a sum of squares. An ordered field is a field F together with a binary relation < which totally orders F and satisfies the two properties: (1) If 0 < x and 0 < y then 0 < xy. (2) If x < y then, for all z in F, x + z < y + z. An element x of an ordered field is positive if x > 0. One can see that the square of any element is positive and that the sum of positive elements is positive. Since −1 is not positive, an ordered field is a real field. Conversely, given a real field F, it is known that one can define an ordering (not necessarily uniquely) on F [2, p. 274]. An ordered field F is a real closed field if: (1) every positive element is a square, and (2) every polynomial of odd degree with coefficients in F has a root in F. For example, the real numbers form a real closed field. Every ordered field can be embedded in a real closed field. It is also known that, in a real closed field K, polynomials satisfy the intermediate value property, i.e. if f(x) ∈ K[x] and a, b ∈ K, a < b, and f(a)f(b) < 0 then there is a c in K such that f(c) = 0.



1971 ◽  
Vol 5 (3) ◽  
pp. 331-335 ◽  
Author(s):  
Roger D. Bleier

We show that each archimedean lattice-ordered group is contained in a unique (up to isomorphism) minimal archimedean vector lattice. This improves a result of Paul F. Conrad appearing previously in this Bulletin. Moreover, we show that this relationship between archimedean lattice-ordered groups and archimedean vector lattices is functorial.



2015 ◽  
Vol 166 (3) ◽  
pp. 261-273 ◽  
Author(s):  
Ningyuan Yao ◽  
Dongyang Long


2011 ◽  
Vol 100 (3) ◽  
pp. 261-275
Author(s):  
Abdelhafed Elkhadiri


1992 ◽  
Vol 44 (6) ◽  
pp. 1262-1271 ◽  
Author(s):  
Murray Marshall

AbstractThe results obtained extend Madden’s result for Dedekind domains to more general types of 1-dimensional Noetherian rings. In particular, these results apply to piecewise polynomial functions t:C → R where R is a real closed field and C ⊆ Rn is a closed 1-dimensional semi-algebraic set, and also to the associated “relative” case where t, C are defined over some subfield K ⊆ R.



Sign in / Sign up

Export Citation Format

Share Document