Train Tracks and Automorphisms of Free Groups

1992 ◽  
Vol 135 (1) ◽  
pp. 1 ◽  
Author(s):  
Mladen Bestvina ◽  
Michael Handel
Author(s):  
Matt Clay

This chapter discusses the automorphisms of free groups. Every group is the collection of symmetries of some object, namely, its Cayley graph. A symmetry of a group is called an automorphism; it is merely an isomorphism of the group to itself. The collection of all of the automorphisms is also a group too, known as the automorphism group and denoted by Aut (G). The chapter considers basic examples of groups to illustrate what an automorphism is, with a focus on the automorphisms of the symmetric group on three elements and of the free abelian group. It also examines the dynamics of an automorphism of a free group and concludes with a description of train tracks, a topological model for the free group, and the Perron–Frobenius theorem. Exercises and research projects are included.


1980 ◽  
Vol 64 (1) ◽  
pp. 52-53 ◽  
Author(s):  
Abraham S.-T. Lue

1998 ◽  
Vol 41 (2) ◽  
pp. 325-332 ◽  
Author(s):  
D. Gaboriau ◽  
G. Levitt ◽  
M. Lustig

Let α be an automorphism of a free group of rank n. The Scott conjecture, proved by Bestvina-Handel, asserts that the fixed subgroup of α has rank at most n. We give a short alternative proof of this result using R-trees.


2015 ◽  
Vol 159 (1) ◽  
pp. 89-114 ◽  
Author(s):  
MORITZ RODENHAUSEN ◽  
RICHARD D. WADE

AbstractWe refine Cohen and Lustig's description of centralisers of Dehn twists of free groups. We show that the centraliser of a Dehn twist of a free group has a subgroup of finite index that has a finite classifying space. We describe an algorithm to find a presentation of the centraliser. We use this algorithm to give an explicit presentation for the centraliser of a Nielsen automorphism in Aut(Fn). This gives restrictions to actions of Aut(Fn) on CAT(0) spaces.


Sign in / Sign up

Export Citation Format

Share Document