Modeling the Drivers of Urban Land Use Change in the Pearl River Delta, China: Integrating Remote Sensing with Socioeconomic Data

2003 ◽  
Vol 79 (1) ◽  
pp. 106-121 ◽  
Author(s):  
Karen C. Seto ◽  
Robert K. Kaufmann
2020 ◽  
Vol 59 (3) ◽  
pp. 363-379
Author(s):  
Junpeng Wen ◽  
Ji Chen ◽  
Wenshi Lin ◽  
Baolin Jiang ◽  
Suishan Xu ◽  
...  

AbstractThis study investigated heavy frontal rainfall that occurred on 13–14 October 2011 over the Pearl River Delta (PRD) in China. The frontal rainstorm was simulated using the WRF-ARW Model (version 3.3), which included its urban canopy model. Although the model-simulated convection occurred 2 h early and the second precipitation peak was underestimated, the model represented the formation, development, and extinction of the frontal rainfall and captured the distribution of the peak value. In addition, the averaged value of 49.7 W m−2 was taken as the anthropogenic heat flux (AHF) of the PRD, and two land-use datasets were adopted: one for 1992 and the other for 2011. The simulation revealed that AHF and urban land-use change (ULUC) increased the total rainfall over the PRD by 6.3% and 7.4% and increased the maximum hourly rainfall intensity by 24.6% and 21.2%, respectively. Furthermore, to elucidate the mechanism of AHF and ULUC influence, the rainstorm structure, low-level jet (LLJ), and CAPE of the rainfall event were analyzed. It was found that AHF and ULUC enhanced two strong southward LLJs located over the urban areas, which carried abundant water vapor to the PRD and generated additional upper-level CAPE. This not only sustained steady ascent of the air, but it also created conditions favorable for downward motion, resulting in large persistent convective clouds and heavy frontal rainfall.


Author(s):  
Karen C. Seto ◽  
Robert K. Kaufmann ◽  
Curtis E. Woodcock

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Anqi Lai ◽  
Yiming Liu ◽  
Xiaoyang Chen ◽  
Ming Chang ◽  
Qi Fan ◽  
...  

We replaced the outdated land-use of the Weather Research and Forecasting-Chemistry (WRF-Chem) model with a refined dataset, the Global Land Cover 2009 (GLC2009) dataset, to investigate the impact of land-use change on the regional atmospheric environment in the Pearl River Delta (PRD) region. Simulations of two months in 2014 (January and July) showed that land-use change increased the monthly averaged 2 m temperature by 0.24°C and 0.27°C in January and July, respectively. The relative humidity decreased by 2.02% and 2.23% in January and July, respectively. Due to the increase in ground roughness, the monthly averaged wind speed in January and July decreased by 0.19 m/s and 0.16 m/s. The planetary boundary layer height increased throughout the day and with larger relative increase during the nighttime. These subtle changes caused by land-use resulted in discernable changes in pollutant concentrations. Monthly averaged surface O3 concentration increased by 0.93 µg/m3 and 1.61 µg/m3 in January and July, while PM2.5 concentration decreased by 1.58 µg/m3 and 3.76 µg/m3, and the changes in pollutant concentrations were more noticeable during the nighttime. Overall, the impacts of land-use change on the atmospheric environment are obvious throughout the PRD region, especially in the urbanized areas.


2007 ◽  
Vol 46 (4) ◽  
pp. 457-476 ◽  
Author(s):  
Jeff C. F. Lo ◽  
Alexis K. H. Lau ◽  
Fei Chen ◽  
Jimmy C. H. Fung ◽  
Kenneth K. M. Leung

Abstract The Pearl River Delta (PRD) region, located in the southern part of Guangdong Province in China, is one of the most rapidly developing regions in the world. The evolution of local and regional sea-breeze circulation (SBC) is believed to be responsible for forming meteorological conditions for high air-pollution episodes in the PRD. To understand better the impacts of urbanization and its associated urban heat island (UHI) on the local- and regional-scale atmospheric circulations over PRD, a number of high-resolution numerical experiments, with different approaches to treat the land surface and urban processes, have been conducted using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The results show that an accurate urban land-use dataset and a proper urban land-use parameterization are critical for the mesoscale model to capture the major features of the observed UHI effect and land–sea-breeze circulations in the PRD. Stronger UHI in the PRD increases the differential temperature gradient between urbanized areas and nearby ocean surface and hence enhances the mesoscale SBC. The SBC front consequently penetrates farther inland to overcome the prevailing easterly flow in the western part of inland Hong Kong. Additional sensitivity studies indicate that further industrial development and urbanization will strengthen the daytime SBC as well as increase the air temperature in the lowest 2 km of the atmosphere.


2002 ◽  
Vol 23 (10) ◽  
pp. 1985-2004 ◽  
Author(s):  
K. C. Seto ◽  
C. E. Woodcock ◽  
C. Song ◽  
X. Huang ◽  
J. Lu ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1219
Author(s):  
Ren Yang ◽  
Baoqing Qin ◽  
Yuancheng Lin

Industrialization and urbanization have led to continuous urban development. The rapid change in land-use type and extent has a significant impact on the capacity of ecosystem services. Changes in the landscape pattern of roads, rivers, railway stations, and expressway entrances and exits have evident geographical proximity effects. We used landscape pattern indices and ecosystem service value (ESV) to evaluate the landscape pattern and ESV spatial differentiation of the Pearl River Delta region and its typical transportation infrastructure and rivers in 1990, 2000, and 2017. The results show that rapid urbanization and industrialization have led to changes in urban land use along the Pearl River Estuary. Urban land changes on the east bank of the Pearl River are greater than urban land changes on the west bank of the Pearl River; the landscape diversity of the Pearl River Delta has increased, the connectivity of the landscape has decreased, and the degree of fragmentation has increased. Second, the city size of the Pearl River Delta was negatively correlated with the ESVs. The ESVs in the core areas of the Pearl River Delta urban agglomeration were smaller than those in the fringe areas. With the gradient change in urban land use, ESVs showed a growing trend from the city center to the surrounding areas. The key areas for ecological protection and restoration should be central urban areas and suburbs. Third, the siphoning effect of the buffer zones of railway stations and expressway entrances and exits was very strong and drove the development and utilization of the surrounding land. As the degree of land development in the buffer zone decreased, the ESVs increased. Fourth, different grades of roads in the Pearl River Delta had different impacts on the regional landscape and ESVs. County roads had a greater interference effect than expressways, national roads, and provincial roads, and the riverside plains of the Pearl River Delta have a large development space, low urban development costs, and multiple land-use activities that have profoundly changed the landscape of the river buffer zone.


Sign in / Sign up

Export Citation Format

Share Document