landscape pattern
Recently Published Documents


TOTAL DOCUMENTS

978
(FIVE YEARS 291)

H-INDEX

58
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Xiaorui Tan ◽  
Lijian Han ◽  
Guodong Li ◽  
Weiqi Zhou ◽  
Weifeng Li ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 678
Author(s):  
Chong Wei ◽  
Zhiqiang Zhang ◽  
Zhiguo Wang ◽  
Lianhai Cao ◽  
Yichang Wei ◽  
...  

The relationship between water-sediment processes and landscape pattern changes has currently become a research hotspot in low-carbon water and land resource optimization research. The SWAT-VRR model is a distributed hydrological model which better shows the effect of land use landscape change on hydrological processes in the watershed. In this paper, the hydrological models of the Dapoling watershed were built, the runoff and sediment yield from 2006 to 2011 were simulated, and the relationship between landscape patterns and water-sediment yield was analyzed. The results show that the SWAT-VRR model is more accurate and reasonable in describing runoff and sediment yield than the SWAT model. The sub-basins whose soil erosion is relatively light are mostly concentrated in the middle reaches with a slope mainly between 0–5°. The NP, PD, ED, SPIIT, SHEI, and SHDI of the watershed increased slightly, and the COHESION, AI, CONTAG, and LPI showed a certain decrease. The landscape pattern is further fragmented, with the degree of landscape heterogeneity increasing and the connection reducing. The runoff, sediment yield and surface runoff are all extremely significantly negatively correlated with forest, which implies that for more complicated patch shapes of forest which have longer boundaries connecting with the patches of other landscape types, the water and sediment processes are regulated more effectively. Therefore, it can be more productive to carry out research on the optimization of water and soil resources under the constraint of carbon emission based on the SWAT-VRR model.


2022 ◽  
Vol 14 (2) ◽  
pp. 279
Author(s):  
Qiong Wu ◽  
Zhaoyi Li ◽  
Changbao Yang ◽  
Hongqing Li ◽  
Liwei Gong ◽  
...  

Urbanization processes greatly change urban landscape patterns and the urban thermal environment. Significant multi-scale correlation exists between the land surface temperature (LST) and landscape pattern. Compared with traditional linear regression methods, the regression model based on random forest has the advantages of higher accuracy and better learning ability, and can remove the linear correlation between regression features. Taking Beijing’s metropolitan area as an example, this paper conducted multi-scale relationship analysis between 3D landscape patterns and LST using Pearson Correlation Coefficient (PCC), Multiple Linear Regression and Random Forest Regression (RFR). The results indicated that LST was relatively high in the central area of Beijing, and decreased from the center to the surrounding areas. The interpretation effect of 3D landscape metrics on LST was more obvious than that of the 2D landscape metrics, and 3D landscape diversity and evenness played more important roles than the other metrics in the change of LST. The multi-scale relationship between LST and the landscape pattern was discovered in the fourth ring road of Beijing, the effect of the extent of change on the landscape pattern is greater than that of the grain size change, and the interpretation effect and correlation of landscape metrics on LST increase with the increase in the rectangle size. Impervious surfaces significantly increased the LST, while the impervious surfaces located at low building areas were more likely to increase LST than those located at tall building areas. It seems that increasing the distance between buildings to improve the rate of energy exchange between urban and rural areas can effectively decrease LST. Vegetation and water can effectively reduce LST, but large, clustered and irregularly shaped patches have a better effect on land surface cooling than small and discrete patches. The Coefficients of Rectangle Variation (CORV) power function fitting results of landscape metrics showed that the optimal rectangle size for studying the relationship between the 3D landscape pattern and LST is about 700 m. Our study is useful for future urban planning and provides references to mitigate the daytime urban heat island (UHI) effect.


2021 ◽  
Vol 14 (1) ◽  
pp. 375
Author(s):  
Ling Qi ◽  
Ranqian Liu ◽  
Yuechen Cui ◽  
Mo Zhou ◽  
Wojciech Bonenberg ◽  
...  

The paper used technical parameters to investigate optimized solutions to protect the ecological environment and improve the microclimate adaptability among the traditional villages in Beijing. Shuiyu Village was used as a case study to analyze the coupling relationship between landscape patterns and the microclimate of traditional villages, with a focus on the ecological relationship between residents and the microclimate. This study also developed a climate index system, which includes computer numerical simulation and microclimate comprehensive analysis methods. The distinct types of landscape patterns were studied using the system. In addition, this paper studied the adaptive design mechanism in-depth, the form parameters of comfort evaluation controllability, and map expression technology of morphological parameters. The findings of this study include the optimized value of the environment based on landscape pattern and the map through the Rhino modeling platform. An interactive platform was developed, and a parametric-assisted optimization design process for traditional villages in the northern part of China was proposed. Moreover, this study concluded optimized strategies and technical guidelines for future planning of the rural areas in northern China with a goal to protect traditional villages and transform them into smart villages with microclimate adaptability.


Ecohydrology ◽  
2021 ◽  
Author(s):  
Xiao Shu ◽  
Weibo Wang ◽  
Mingyong Zhu ◽  
Jilei Xu ◽  
Xiang Tan ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261846
Author(s):  
Wenjing Ren ◽  
Jingyuan Zhao ◽  
Xina Ma ◽  
Xiao Wang

Three-dimensional landscape patterns are an effective means to study the relationship between landscape pattern evolution and eco-environmental effects. This paper selects six districts in Xi’an as the study area to examine the spatial distribution characteristics of the three-dimensional architectural landscape in the city’s main urban area using three-dimensional information on the buildings in 2020 with the support of GIS. In this study, two new architectural landscape indices—landscape height variable coefficient and building rugosity index—were employed in landscape pattern analysis, whilst a system of rigorous and comprehensive three-dimensional architectural landscape metrics was established using principal component analysis. A mathematical model of weighted change of landscape metrics based on the objective weighting method was applied to carry out scale analysis of the landscape patterns. Spatial statistical analysis and spatial autocorrelation analysis were conducted to comprehensively study the differentiation of three-dimensional architectural landscape spatial patterns. The results show that the characteristic scale of the three-dimensional landscape pattern in Xi’an’s main urban area is around 8 km. Moreover, the three-dimensional landscape of the buildings in this area is spatially positively correlated, exhibiting a high degree of spatial autocorrelation whilst only showing small spatial differences. The layout of the architectural landscape pattern is disorderly and chaotic within the second ring, whilst the clustering of patch types occurs near the third ring. Moreover, the building density in the Beilin, Lianhu, and Xincheng districts is large, the building height types are rich, and the roughness of the underlying surface is high, such that these are key areas to be improved through urban renewal. The height, volume, density, morphological heterogeneity, and vertical roughness of the architectural landscape vary amongst functional areas within the study area. This paper is the first to apply the study of spatial heterogeneity of three-dimensional landscape patterns to Xi’an. It does so in order to provide a quantitative basis for urban landscape ecological design for urban renewal and the rational planning of built-up areas, which will promote the sustainable development of the city’s urban environment.


Sign in / Sign up

Export Citation Format

Share Document