Urban Modification in a Mesoscale Model and the Effects on the Local Circulation in the Pearl River Delta Region

2007 ◽  
Vol 46 (4) ◽  
pp. 457-476 ◽  
Author(s):  
Jeff C. F. Lo ◽  
Alexis K. H. Lau ◽  
Fei Chen ◽  
Jimmy C. H. Fung ◽  
Kenneth K. M. Leung

Abstract The Pearl River Delta (PRD) region, located in the southern part of Guangdong Province in China, is one of the most rapidly developing regions in the world. The evolution of local and regional sea-breeze circulation (SBC) is believed to be responsible for forming meteorological conditions for high air-pollution episodes in the PRD. To understand better the impacts of urbanization and its associated urban heat island (UHI) on the local- and regional-scale atmospheric circulations over PRD, a number of high-resolution numerical experiments, with different approaches to treat the land surface and urban processes, have been conducted using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The results show that an accurate urban land-use dataset and a proper urban land-use parameterization are critical for the mesoscale model to capture the major features of the observed UHI effect and land–sea-breeze circulations in the PRD. Stronger UHI in the PRD increases the differential temperature gradient between urbanized areas and nearby ocean surface and hence enhances the mesoscale SBC. The SBC front consequently penetrates farther inland to overcome the prevailing easterly flow in the western part of inland Hong Kong. Additional sensitivity studies indicate that further industrial development and urbanization will strengthen the daytime SBC as well as increase the air temperature in the lowest 2 km of the atmosphere.

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1219
Author(s):  
Ren Yang ◽  
Baoqing Qin ◽  
Yuancheng Lin

Industrialization and urbanization have led to continuous urban development. The rapid change in land-use type and extent has a significant impact on the capacity of ecosystem services. Changes in the landscape pattern of roads, rivers, railway stations, and expressway entrances and exits have evident geographical proximity effects. We used landscape pattern indices and ecosystem service value (ESV) to evaluate the landscape pattern and ESV spatial differentiation of the Pearl River Delta region and its typical transportation infrastructure and rivers in 1990, 2000, and 2017. The results show that rapid urbanization and industrialization have led to changes in urban land use along the Pearl River Estuary. Urban land changes on the east bank of the Pearl River are greater than urban land changes on the west bank of the Pearl River; the landscape diversity of the Pearl River Delta has increased, the connectivity of the landscape has decreased, and the degree of fragmentation has increased. Second, the city size of the Pearl River Delta was negatively correlated with the ESVs. The ESVs in the core areas of the Pearl River Delta urban agglomeration were smaller than those in the fringe areas. With the gradient change in urban land use, ESVs showed a growing trend from the city center to the surrounding areas. The key areas for ecological protection and restoration should be central urban areas and suburbs. Third, the siphoning effect of the buffer zones of railway stations and expressway entrances and exits was very strong and drove the development and utilization of the surrounding land. As the degree of land development in the buffer zone decreased, the ESVs increased. Fourth, different grades of roads in the Pearl River Delta had different impacts on the regional landscape and ESVs. County roads had a greater interference effect than expressways, national roads, and provincial roads, and the riverside plains of the Pearl River Delta have a large development space, low urban development costs, and multiple land-use activities that have profoundly changed the landscape of the river buffer zone.


Author(s):  
Karen C. Seto ◽  
Robert K. Kaufmann ◽  
Curtis E. Woodcock

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Anqi Lai ◽  
Yiming Liu ◽  
Xiaoyang Chen ◽  
Ming Chang ◽  
Qi Fan ◽  
...  

We replaced the outdated land-use of the Weather Research and Forecasting-Chemistry (WRF-Chem) model with a refined dataset, the Global Land Cover 2009 (GLC2009) dataset, to investigate the impact of land-use change on the regional atmospheric environment in the Pearl River Delta (PRD) region. Simulations of two months in 2014 (January and July) showed that land-use change increased the monthly averaged 2 m temperature by 0.24°C and 0.27°C in January and July, respectively. The relative humidity decreased by 2.02% and 2.23% in January and July, respectively. Due to the increase in ground roughness, the monthly averaged wind speed in January and July decreased by 0.19 m/s and 0.16 m/s. The planetary boundary layer height increased throughout the day and with larger relative increase during the nighttime. These subtle changes caused by land-use resulted in discernable changes in pollutant concentrations. Monthly averaged surface O3 concentration increased by 0.93 µg/m3 and 1.61 µg/m3 in January and July, while PM2.5 concentration decreased by 1.58 µg/m3 and 3.76 µg/m3, and the changes in pollutant concentrations were more noticeable during the nighttime. Overall, the impacts of land-use change on the atmospheric environment are obvious throughout the PRD region, especially in the urbanized areas.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Chunhong Zhao ◽  
Qunou Jiang ◽  
Zhongxiao Sun ◽  
Haiyue Zhong ◽  
Shasha Lu

The climate impacts of future urbanization in the Pearl River Delta (PRD) region in China were simulated with the Dynamics of Land Systems (DLS) model and the Weather Research and Forecasting (WRF) model in this study. The land use and land cover data in 2000 and 2020 were simulated with the DLS model based on the regional development planning. Then the spatial and temporal changes of surface air temperature, ground heat flux, and regional precipitation in 2020 were quantified and analyzed through comparing simulation results by WRF. Results show that the built-up land will become the dominant land use type in the PRD in 2020. Besides, the near-surface air temperature shows an increasing trend on the whole region in both summer and winter, but with some seasonal variation. The urban temperature rise is more apparent in summer than it is in winter. In addition, there is some difference between the spatial pattern of precipitation in summer and winter in 2020; the spatial variation of precipitation is a bit greater in summer than it is in winter. Results can provide significant reference for the land use management to alleviate the climate change.


Sign in / Sign up

Export Citation Format

Share Document